• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

曲线纤维变刚度壁板的亚音速气弹稳定性研究

段静波 徐步青

段静波, 徐步青. 曲线纤维变刚度壁板的亚音速气弹稳定性研究[J]. 西南交通大学学报, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277
引用本文: 段静波, 徐步青. 曲线纤维变刚度壁板的亚音速气弹稳定性研究[J]. 西南交通大学学报, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277
DUAN Jingbo, XU Buqing. Aeroelastic Instability of Variable-Stiffness Panels with Curvilinear Fibers in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277
Citation: DUAN Jingbo, XU Buqing. Aeroelastic Instability of Variable-Stiffness Panels with Curvilinear Fibers in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277

曲线纤维变刚度壁板的亚音速气弹稳定性研究

doi: 10.3969/j.issn.0258-2724.20200277
基金项目: 国家自然科学基金(11702325);河北省重点研发计划(21350401D)
详细信息
    作者简介:

    段静波(1982—),男,副教授,研究方向为气动弹性力学,E-mail:duanjingbo@stdu.edu.cn

    通讯作者:

    徐步青(1970—),男,副教授,研究方向为气动弹性力学,E-mail:623220972@126.com

  • 中图分类号: V221.3

Aeroelastic Instability of Variable-Stiffness Panels with Curvilinear Fibers in Subsonic Flow

  • 摘要:

    针对曲线纤维变刚度复合材料层合板在高速列车壁板结构轻量化设计中的广阔应用前景,研究了弹性、黏弹性变刚度复合壁板在亚音速流场中的气动弹性稳定性问题. 首先,基于Mindlin厚板理论和势流流动理论分别描述壁板结构变形和亚音速气动力,根据虚功原理和有限元法建立了曲线纤维变刚度复合材料弹性/黏弹性壁板的气动弹性稳定性分析模型,进而采用复模态理论求解复合材料变刚度壁板发散临界速度;在验证方法正确性和收敛性的基础上,研究了壁板关键参数等对复合变刚度壁板发散失稳特性的影响规律. 研究结果表明:与直线纤维壁板相比,通过调整曲线纤维路径可以实现壁板的发散临界速度50%左右的提升,有效增强壁板气动弹性稳定性.

     

  • 图 1  曲线纤维层合板

    Figure 1.  Curvilinear fibers composite panels

    图 2  曲线纤维壁板固有频率结果对比

    注:每种图例下第一个柱状条为本文解,第二个柱状条为文献[12]解.

    Figure 2.  Comparison of natural frequencies of curved fiber composite laminates

    图 3  黏弹性和弹性变刚度壁板频率随气流速度变化

    Figure 3.  Change of the two frequencies of viscoelastic and elastic variable-stiffness panels with air velocity

    图 4  直线铺设与曲线铺设对变刚度壁板发散临界速度的影响

    Figure 4.  Comparison of variable-stiffness panel instability with straight and curved fiber laying

    图 5  铺层主方向对曲线纤维变刚度壁板发散临界速度影响

    Figure 5.  Influence of ply direction on divergence critical speed of variable-stiffness panels with curved fibers

    图 6  曲线纤维变刚度壁板失稳速度随T0的变化(T1不变)

    Figure 6.  Changes of divergence characteristics with T0 for variable-stiffness plate with curved fibers (T1 unchanged)

    图 7  曲线纤维变刚度壁板失稳速度随T1的变化(T0不变)

    Figure 7.  Changes of flutter characteristics with T1 for variable-stiffness plate with curved fibers (T0 unchanged)

    图 8  黏弹性阻尼对曲线纤维变刚度壁板发散临界速度影响

    Figure 8.  Influence of viscoelastic damp on divergence critical speed of variable-stiffness panels with curved fibers

    图 9  约束对曲线纤维变刚度壁板发散失稳临界速度影响

    Figure 9.  Influence of boundary conditions on divergence critical speed of variable-stiffness panels with curved fibers

    表  1  变刚度复合壁板固有频率的网格收敛性

    Table  1.   Grid convergence of natural frequencies of composite panels with variable stiffness

    固有
    频率
    网格规模文献[12]误差/%
    5 × 510 × 1020 × 2030 × 30
    一阶3.7864.0603.9363.9373.9410.10
    二阶5.8535.2785.1265.0905.0870.06
    三阶13.0877.8487.5827.5327.5650.43
    四阶16.21911.01210.74010.35810.3850.26
    五阶17.40912.28110.97810.65811.0523.56
    六阶22.24912.27411.93911.69711.3273.27
    下载: 导出CSV

    表  2  两端固支壁板发散稳定性结果对比

    Table  2.   Divergence stability of the plate with bilateral fixation

    厚度/
    mm
    板长 0.8 m板长 0.9 m板长 1.0 m
    文献本文文献本文文献本文
    2.40 73.53 71.03 61.62 61.01 52.61 53.01
    2.60 82.90 80.25 69.48 68.51 59.23 59.10
    2.90 97.66 95.47 81.84 81.06 69.88 70.04
    3.30 118.55 116.67 99.35 98.21 84.82 85.12
    下载: 导出CSV
  • [1] GŰRDAL Z, TATTING B F, WU C K. Variable-stiffness composite panels:effects of stiffness variation on the in-plane and buckling response[J]. Composites:Part A:Applied Science and Manufacturing, 2008, 39(5): 911-922. doi: 10.1016/j.compositesa.2007.11.015
    [2] HYPER M W, CHARETTE R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015. doi: 10.2514/3.10697
    [3] LOPES C S, GÜRDAL Z, CAMANHO P P. Variable-stiffness composite panels:Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86(9): 897-907. doi: 10.1016/j.compstruc.2007.04.016
    [4] HAMED A, PEDRO R, DEMOURA M F S F. Large deflection and stresses in variable stiffness composite laminates with curvilinear fibres[J]. International Journal of Mechanical Sciences, 2013, 73: 14-26. doi: 10.1016/j.ijmecsci.2013.03.013
    [5] 马洪涛. 变刚度复合材料层合板的力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [6] 聂国隽,朱佳瑜. 纤维曲线铺放的复合材料层合板的自由振动分析[J]. 力学季刊,2016,37(2): 274-283.

    NIE Guojun, ZHU Jiayu. Free vibration analysis of composite laminates with curvilinear fibers[J]. Chinese Quarterly of Mechanics, 2016, 37(2): 274-283.
    [7] 马成. 复合材料纤维曲线铺放层合板减振性能分析[D]. 南京: 南京航空航天大学, 2019.
    [8] GROH R M J, WEAVER P M. Buckling analysis of variable angle tow,variable thickness panels with transverse shear effects[J]. Composite Structures, 2014, 107: 482-493. doi: 10.1016/j.compstruct.2013.08.025
    [9] HAO P, YUAN X J, LIU C, et al. An integrated framework of exact modeling,isogeometric analysis and optimization for variable-stiffness composite panels[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205-238. doi: 10.1016/j.cma.2018.04.046
    [10] 孙士平,张冰,邓同强,等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报,2019,36(4): 1052-1061.

    SUN Shiping, ZHANG Bing, DENG Tongqiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica, 2019, 36(4): 1052-1061.
    [11] VAHID K, JAMSHID F. Supersonic panel flutter of variable stiffness composite laminated skew panels subjected to yawed flow by using NURBS-based isogeometric approach[J]. Journal of Fluids and Structures, 2018, 82: 198-214. doi: 10.1016/j.jfluidstructs.2018.07.002
    [12] 欧阳小穗,刘毅. 高速流场中变刚度复合材料层合板颤振分析[J]. 航空学报,2018,39(3): 221539.

    OUYANG Xiaosui, LIU Yi. Panel flutter of variable stiffness composite laminates in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 221539.
    [13] TOURAJ F, DAVOOD A, HASAN K. Flutter improvement of a thin walled wing-engine system by applying curvilinear fiber path[J]. Aerospace Science and Technology, 2019, 93(2): 105353.1-105353.14.
    [14] 许家宝. 亚麻/玻璃纤维混杂复合材料的动态粘弹性及湿热性能研究[D]. 南京: 南京航空航天大学, 2019.
    [15] KORNECKI A, DOWELL E H, O’BRIEN J. On the aeroelastic instability of two-dimensional panels in uniform incompressible flow[J]. Journal of Sound and Vibration, 1976, 47(2): 163-178.
    [16] GUO Y, LI F M. Chaotic motion of a composite laminated plate with geometric nonlinearity in subsonic flow[J]. International Journal of Non-Linear Mechanics, 2013, 50: 81-90. doi: 10.1016/j.ijnonlinmec.2012.11.010
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  152
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2021-02-06
  • 网络出版日期:  2022-08-18
  • 刊出日期:  2021-03-03

目录

    /

    返回文章
    返回