• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

半刚性基层沥青路面结构高速弯沉仪应用误差

吴朝阳 蒋鑫

吴朝阳, 蒋鑫. 半刚性基层沥青路面结构高速弯沉仪应用误差[J]. 西南交通大学学报, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247
引用本文: 吴朝阳, 蒋鑫. 半刚性基层沥青路面结构高速弯沉仪应用误差[J]. 西南交通大学学报, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247
WU Chaoyang, JIANG Xin. Application Error of Traffic Speed Deflectometer for Asphalt Pavement Structure with Semi-Rigid Base[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247
Citation: WU Chaoyang, JIANG Xin. Application Error of Traffic Speed Deflectometer for Asphalt Pavement Structure with Semi-Rigid Base[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1109-1115. doi: 10.3969/j.issn.0258-2724.20200247

半刚性基层沥青路面结构高速弯沉仪应用误差

doi: 10.3969/j.issn.0258-2724.20200247
基金项目: 四川省科技计划项目(2019YFS0492);国家自然科学基金(51378440)
详细信息
    作者简介:

    吴朝阳(1983—),男,博士研究生,研究方向为路面工程,E-mail:chaoyangwu@qq.com

    通讯作者:

    蒋鑫(1976—),男,教授,博士,研究方向为路基路面工程,E-mail:xjiang01@163.com

  • 中图分类号: V221.3

Application Error of Traffic Speed Deflectometer for Asphalt Pavement Structure with Semi-Rigid Base

  • 摘要: 为评估高速弯沉仪在半刚性基层沥青路面结构中的适用性,采用2.5D有限元方法建立高速弯沉仪移动荷载作用下路面结构数值模型,并评估其应用误差. 首先,利用两个前人研究成果验证2.5D有限元程序的可靠性;其次,对比了常用式、全厚式和半刚性基层3种典型沥青路面结构的弯沉斜率曲线,并总结了弯沉斜率特征;最后,针对半刚性基层沥青路面结构的高速弯沉仪应用误差予以评估. 研究结果表明:半刚性基层沥青路面结构弯沉斜率曲线存在多个峰值点;高速弯沉仪应用于半刚性基层沥青路面结构时,参照传感器读数不为0,将其应用于典型半刚性基层沥青路面结构时,因参照传感器误差引起的弯沉误差高达87.3%;为保证工程测试精度,高速弯沉仪应用于半刚性基层沥青路面结构时宜延长横梁长度至8.0 m.

     

  • 图 1  TSD设备内部组成及多普勒传感器布设示意

    Figure 1.  Innteral componets of TSD and placement of Doppler sensors

    图 2  多普勒激光测振仪系统工作原理

    Figure 2.  Working princliple of laser Doppler vibrometer system

    图 3  TSD弯沉拟合方法示意

    Figure 3.  Fitting method of TSD deflection test

    图 4  MnRoadCell 19路面结构及2.5D有限元模型

    Figure 4.  Pavement structure of MnRoad Cell 19 and 2.5D finite element model

    图 5  2.5D有限元与3D-MOVE ANALYSIS弯沉计算结果对比

    Figure 5.  Calculated result comparison between 2.5D finite element modeland 3D-MOVE ANALYSIS

    图 6  2.5D有限元和3D有限元模型计算结果对比

    Figure 6.  Comparison between 2.5D and 3D finite element model for semi-rigid pavement structure

    图 7  3种沥青路面结构弯沉斜率

    Figure 7.  Deflection slope curves of three types of asphalt pavement structure under the moving load of TSD

    图 8  忽略S3500传感器弯沉斜率时计算弯沉和拟合弯沉的差异

    Figure 8.  Difference between fitting deflection and calculated deflection in the case of ignoring of S3500 sensor deflection

    图 9  半刚性基层沥青路面不同土基模量结构弯沉斜率曲线

    Figure 9.  Influence of subgrade modulus on deflection slope in asphalt pavement with semi-rigid base

    表  1  路面结构材料参数表

    Table  1.   Material parameters of pavement structure

    层位材料瞬态
    模量/MPa
    泊松比密度/
    (kg•m−3
    厚度/
    cm
    上面层 SMA-16 1550 0.35 2400 4
    中面层 AC-25 1250 0.35 2400 5
    下面层 AC-30 2450 0.35 2400 7
    上基层 二灰砂 10000 0.25 2100 38
    下基层 石灰土 2000 0.35 1900 36
    土基 土基 250 0.40 1900 600
    下载: 导出CSV

    表  2  沥青混合料Prony级数参数

    Table  2.   Prony series parameters of asphalt mixture

    ${\tau}$/s
    g
    SMA-16AC-25AC-30
    1 × 10−5 0.7490 0.3933 0.3696
    1 × 10−4 0.1063 0.2357 0.2011
    1 × 10−3 0.0643 0.1867 0.1942
    1 × 10−2 0.0290 0.1168 0.1223
    1 × 10−1 0.0145 0.0438 0.0574
    1 × 100 0.0068 0.0153 0.0235
    1 × 101 0.0036 0.0044 0.0100
    1 × 102 0.0017 0.0007 0.0041
    1 × 103 0.0013 0.0018 0.0027
    下载: 导出CSV

    表  3  路面结构厚度及模量

    Table  3.   Parameters of asphalt pavement structure

    路段面层厚度/cm面层模量/MPa基层厚度/cm基层模量/MPa土基厚度/cm土基模量/MPa
    PA-144 16.5 1585.3 20.9 275.2 139.7 158.3
    ID-22 8.3 2516.1 20.4 208.7 127.0 74.2
    US9-43 22.8 3462.0 350.0 188.0
    CDN 18.0 10000.0 50.0 13000.0 600.0 60.0
    下载: 导出CSV
  • XU B, RANJITHAN S R, KIM Y R. New relationships between falling weight deflectometer deflections and asphalt pavement layer condition indicators[J]. Transportation Research Board, 2002, 1806(1): 48-56. doi: 10.3141/1806-06
    赵茂才. 道路无损检测技术[M]. 北京: 电子工业出版社, 2016: 10-15.
    PEDERSEN L. Viscoelastic modelling of road deflections for use with the traffic speed deflectometer[D]. Copenhagen: Technical University of Denmark, 2013.
    张德津,李清泉,曹民,等. 基于路面变形速度的弯沉测量方法[J]. 上海交通大学学报,2015,49(2): 220-226,231.

    ZHANG Dejin, LI Qingquan, CAO Min, et al. Deflection measurement methods based on velocities of pavement deflections[J]. Journal of Shanghai Jiaotong University, 2015, 49(2): 220-226,231.
    FLINTSCH G, KATICHA S, BRYCE J, et al. Assessment of continuous pavement deflection measuring technologies[R]. Washington D. C.: Transportation Research Board, 2013.
    RADA G R, NAZARIAN S, VISINTINE B A, et al. Pavement structural evaluation at the network level: final report[R]. Washington D. C.: US Federal Highway Administration, 2016.
    FLINTSCH G W, FERNE B, DIEFENDERFER B, et al. Evaluation of traffic speed continuous deflection devices[C]//Proceedings of the 91st Annual Meeting. Washington D. C.: Transport Research Board, 2012: 37-46.
    王宏畅,黄晓明,傅智. 半刚性基层表面裂缝影响因素[J]. 交通运输工程学报,2005,5(2): 38-41. doi: 10.3321/j.issn:1671-1637.2005.02.010

    WANG Hongchang, HUANG Xiaoming, FU Zhi. Influence factors on surface crack of semi-rigid base course[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 38-41. doi: 10.3321/j.issn:1671-1637.2005.02.010
    沙爱民. 半刚性基层的材料特性[J]. 中国公路学报,2008,21(1): 1-5. doi: 10.3321/j.issn:1001-7372.2008.01.001

    SHA Aimin. Material characteristics of semi-rigid base[J]. China Journal of Highway and Transport, 2008, 21(1): 1-5. doi: 10.3321/j.issn:1001-7372.2008.01.001
    MULLER W B, ROBERTS J. Revised approach to assessing traffic speed deflectometer data and field validation of deflection bowl predictions[J]. International Journal of Pavement Engineering, 2013, 14(4): 388-402. doi: 10.1080/10298436.2012.715646
    董泽蛟,谭忆秋,欧进萍. 三向非均布移动荷载作用下沥青路面动力响应分析[J]. 土木工程学报,2013,46(6): 122-130.

    DONG Zejiao, TAN Yiqiu, OU Jinping. Dynamic response analysis of asphalt pavement under three-directional nonuniform moving load[J]. China Civil Engineering Journal, 2013, 46(6): 122-130.
    何俊锋. 2.5维有限元法分析列车运行引起的地面动力特性及沉降[D]. 上海: 同济大学, 2009.
    边学成. 高速列车运动荷载作用下地基和隧道的动力响应分析[D]. 杭州: 浙江大学, 2005.
    WU C Y, WANG H, ZHAO J N, et al. Prediction of viscoelastic pavement responses under moving load and nonuniform tire contact stresses using 2.5-D finite element method[J]. Mathematical Problems in Engineering, 2020, 2020: 1-16.
    NASIMIFAR M, THYAGARAJAN S, SIVANESWARAN N. Backcalculation of flexible pavement layer moduli from traffic speed deflectometer data[J]. Transportation Research Record, 2017, 2641(1): 66-74. doi: 10.3141/2641-09
    NASIMIFAR M, THYAGARAJAN S, SIVANESWARAN N. Computation of pavement vertical surface deflections from traffic speed deflectometer data:evaluation of current methods[J]. Journal of Transportation Engineering,Part B:Pavements, 2018, 144(1): 04018001.1-04018001.9.
    查旭东. 路面结构层模量反算方法综述[J]. 交通运输工程学报,2002,2(4): 1-6. doi: 10.3321/j.issn:1671-1637.2002.04.001

    ZHA Xudong. Summary of back calculation methods of pavement layer moduli[J]. Journal of Traffic and Transportation Engineering, 2002, 2(4): 1-6. doi: 10.3321/j.issn:1671-1637.2002.04.001
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  233
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-08-10
  • 网络出版日期:  2020-08-25
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回