• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于激光雷达的无人驾驶障碍物检测和跟踪

王涛 曾文浩 于琪

王涛, 曾文浩, 于琪. 基于激光雷达的无人驾驶障碍物检测和跟踪[J]. 西南交通大学学报, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240
引用本文: 王涛, 曾文浩, 于琪. 基于激光雷达的无人驾驶障碍物检测和跟踪[J]. 西南交通大学学报, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240
WANG Tao, ZENG Wenhao, YU Qi. Obstacle Detection and Tracking for Driverless Cars Based on Lidar[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240
Citation: WANG Tao, ZENG Wenhao, YU Qi. Obstacle Detection and Tracking for Driverless Cars Based on Lidar[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1346-1354. doi: 10.3969/j.issn.0258-2724.20200240

基于激光雷达的无人驾驶障碍物检测和跟踪

doi: 10.3969/j.issn.0258-2724.20200240
基金项目: 国家自然科学基金(51477146)
详细信息
    作者简介:

    王涛(1972—),男,教授,博士,研究方向为计算机控制技术,E-mail:wangtao618@126.com

  • 中图分类号: TP391

Obstacle Detection and Tracking for Driverless Cars Based on Lidar

  • 摘要:

    针对激光雷达动态障碍物检测与跟踪过程中聚类适应性差、实时性低和跟踪准确度不高等问题,提出一种自适应的密度聚类算法和多特征数据关联方法,分别用于检测和跟踪. 首先,对激光雷达采集的点云进行路沿检测、感兴趣区域提取和地面分割等预处理,去除无关点云;然后,基于自适应的密度聚类算法对非地面的点云进行聚类,完成障碍物点云检测;最后,利用加权多特征数据关联算法结合卡尔曼滤波器实现对动态障碍物跟踪. 通过实验表明:本算法能够根据10 Hz的激光雷达数据实现对障碍物准确、稳定的检测和跟踪,且聚类时间缩短32%.

     

  • 图 1  “智轨”列车平台以及株洲大道

    Figure 1.  ART Train Platform and Zhuzhou Avenue

    图 2  路沿点提取效果

    Figure 2.  Effect of curb point extraction

    图 3  地面分割效果

    Figure 3.  Effect of ground segmentation

    图 4  球型搜索和椭球型搜索示意

    Figure 4.  Illustration of spherical search and ellipsoid search

    图 5  物体发生倾斜时的示意

    Figure 5.  Schematic diagram in the case of tilted object

    图 6  椭球域及其代表对象的三维邻域

    Figure 6.  Three-dimensional neighborhood ofellipsoidal domain and its representative objects

    图 7  障碍物跟踪算法流程

    Figure 7.  Flowchart of obstacle tracking algorithm

    图 8  障碍物与激光雷达的相对位置

    Figure 8.  Relative position of obstacles and LiDAR

    图 9  第260帧的聚类结果

    Figure 9.  Clustering results at the frame 260th

    图 10  第280帧的聚类结果

    Figure 10.  Clustering results at the frame 280th

    图 11  聚类所消耗的时间对比

    Figure 11.  Comparison of time consumed by clustering

    图 12  动态障碍物跟踪效果

    Figure 12.  Effect of dynamic obstacle tracking

  • [1] 谢德胜,徐友春,王任栋,等. 基于三维激光雷达的无人车障碍物检测与跟踪[J]. 汽车工程,2018,40(8): 952-959.

    XIE Desheng, XU Youchun, WANG Rendong, et al. Obstacle detection and tracking for unmanned vehicles based on 3D laser radar[J]. Automotive Engineering, 2018, 40(8): 952-959.
    [2] AZIM A, AYCARD O. Layer-based supervised classification of moving objects in outdoor dynamic environment using 3D laser scanner[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 1408-1414.
    [3] 黄钢,吴超仲,吕能超. 基于改进DBSCAN算法的激光雷达目标物检测方法[J]. 交通信息与安全,2015,33(3): 23-28. doi: 10.3963/j.issn.1674-4861.2015.03.004

    HUANG Gang, WU Chaozhong, LYU Nengchao. A study of laser radar object detection based on improved DBSCAN algorithm[J]. Journal of Transport Information and Safety, 2015, 33(3): 23-28. doi: 10.3963/j.issn.1674-4861.2015.03.004
    [4] 包瑞胜,马新,崔熠明. 基于优化DBSCAN算法的智能车载激光雷达数据处理技术研究[J]. 中国交通信息化,2017(3): 135-140.
    [5] ZHANG J S, KEREKES J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 726-730. doi: 10.1109/LGRS.2014.2360367
    [6] CHEN J R, XU H, WU J Q, et al. Deer crossing road detection with roadside LiDAR sensor[J]. IEEE Access, 2019, 7: 65944-65954. doi: 10.1109/ACCESS.2019.2916718
    [7] LEONARD J, HOW J, TELLER S, et al. A perception-driven autonomous urban vehicle[J]. Journal of Field Robotics, 2008, 25(10): 727-774. doi: 10.1002/rob.20262
    [8] NAVARRO-SERMENT L E, MERTZ C, HEBERT M. Pedestrian detection and tracking using three-dimensional LiDAR data[J]. The International Journal of Robotics Research, 2010, 29(12): 1516-1528. doi: 10.1177/0278364910370216
    [9] 汪世财,谈东奎,谢有浩,等. 基于激光雷达点云密度特征的智能车障碍物检测与跟踪[J]. 合肥工业大学学报(自然科学版),2019,42(10): 1311-1317. doi: 10.3969/j.issn.1003-5060.2019.10.003

    WANG Shicai, TAN Dongkui, XIE Youhao, et al. Obstacle detection and tracking for intelligent vehicle based on density characteristics of point cloud using 3D lidar[J]. Journal of Hefei University of Technology(Natural Science), 2019, 42(10): 1311-1317. doi: 10.3969/j.issn.1003-5060.2019.10.003
    [10] HAN J, KIM D, LEE M, et al. Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 971-985. doi: 10.1109/TVT.2012.2182785
    [11] ZHOU Y, WANG D, XIE X, et al. A fast and accurate segmentation method for ordered LiDAR point cloud of large-scale scenes[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(11): 1981-1985. doi: 10.1109/LGRS.2014.2316009
    [12] XU S, WANG R S, WANG H, et al. An optimal hierarchical clustering approach to mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2765-2776. doi: 10.1109/TITS.2019.2912455
    [13] 刘健. 基于三维激光雷达的无人驾驶车辆环境建模关键技术研究[D]. 合肥: 中国科学技术大学, 2016.
    [14] ZHANG Y S, SUN X, XU H, et al. Tracking multi-vehicles with reference points switches at the intersection using a roadside LiDAR sensor[J]. IEEE Access, 2019, 7: 174072-174082. doi: 10.1109/ACCESS.2019.2953747
  • 加载中
图(12)
计量
  • 文章访问数:  918
  • HTML全文浏览量:  911
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-11-15
  • 网络出版日期:  2021-01-05
  • 刊出日期:  2021-01-05

目录

    /

    返回文章
    返回