• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

波形钢腹板PC组合箱梁纯扭全过程分析模型

周聪 李立峰

周聪, 李立峰. 波形钢腹板PC组合箱梁纯扭全过程分析模型[J]. 西南交通大学学报, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201
引用本文: 周聪, 李立峰. 波形钢腹板PC组合箱梁纯扭全过程分析模型[J]. 西南交通大学学报, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201
ZHOU Cong, LI Lifeng. Full-Range Analytical Model for Prestressed Concrete Composite Box Girders with Corrugated Steel Webs Under Pure Torsion[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201
Citation: ZHOU Cong, LI Lifeng. Full-Range Analytical Model for Prestressed Concrete Composite Box Girders with Corrugated Steel Webs Under Pure Torsion[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201

波形钢腹板PC组合箱梁纯扭全过程分析模型

doi: 10.3969/j.issn.0258-2724.20200201
基金项目: 国家自然科学基金(52108140,51978257);湖南省自然科学基金(2021JJ40213);湖南省教育厅科学研究项目(21B0497);湖南省交通厅科技项目(201914)
详细信息
    作者简介:

    周聪(1990—),男,讲师,博士,研究方向为波形钢腹板组合箱梁、UHPC高性能结构,E-mail:congzhou1990@163.com

    通讯作者:

    李立峰(1971—),男,教授,博士,博导,研究方向为UHPC预制装配结构、钢-混组合结构、桥梁抗震,E-mail:lilifeng@hnu.edu.cn

  • 中图分类号: U448.21.3

Full-Range Analytical Model for Prestressed Concrete Composite Box Girders with Corrugated Steel Webs Under Pure Torsion

  • 摘要:

    为准确预测波形钢腹板PC组合箱梁(PCCBGCSWs)在纯扭作用下的全过程受力行为,基于软化薄膜元理论提出了改进软化薄膜元模型(ISMMT). 首先,对ISMMT的平衡、变形协调和材料本构方程以及通用求解程序进行了简要介绍;在此基础上,提出了当波形钢腹板、预应力及普通钢筋均处于弹性阶段时的简化求解程序框图,该简化程序仅有一层迭代循环;最后,完成了一根PCCBGCSWs试件的纯扭模型试验,通过试验得到了试件的扭矩-扭率曲线、波形钢腹板和混凝土翼缘板剪应变、预应力和普通钢筋应变等结果,将试验结果与ISMMT预测的理论结果进行了对比,同时将简化求解程序和通用求解程序的求解效率进行了比较. 结果表明: ISMMT不仅能准确预测PCCBGCSWs在纯扭作用下的全过程扭矩-扭率曲线,还能模拟各构件的应变发展历程,包括混凝土翼缘板、波形钢腹板、预应力和普通钢筋等;运用ISMMT预测本文模型梁的纯扭全过程受力行为时,若采用通用求解程序进行计算,所需的总迭代次数可高达7.9 × 106次,采用简化求解程序最少为5次,最多也仅为193次,可极大提高求解效率;本文ISMMT为PCCBGCSWs的纯扭全过程分析提供了一种有效途径.

     

  • 图 1  纯扭作用下波形钢腹板PC组合箱梁

    Figure 1.  Prestressed concrete composite box girder with corrugated steel webs subjected to pure torsion

    图 2  ISMMT的求解程序框图

    Figure 2.  Program block diagram for solution algorithm of the ISMMT

    图 3  试件尺寸

    Figure 3.  Size of the specimen

    图 4  纯扭加载装置

    Figure 4.  Loading equipment for pure torsion test

    图 5  扭转角计算示意

    Figure 5.  Calculation diagram of torsional angle

    图 6  应变测点布置

    Figure 6.  Arrangement of strain measuring points

    图 7  ISMMT预测结果与试验结果对比

    Figure 7.  Comparison of the results obtained from the ISMMT and experiment

    表  1  试件材料参数

    Table  1.   Material properties of the test beam

    混凝土棱柱体抗压强度/MPa波形钢腹板预应力钢筋初应力/MPa普通钢筋
    厚度/mm屈服强度/MPa直径/mm屈服强度/MPa
    24.93.723580010357
    下载: 导出CSV

    表  2  ISMMT预测结果与试验结果对比(开裂状态)

    Table  2.   Comparison of the predicted torques and twists from the ISMMT and the experiment (cracking state)

    参数$ {T_{11}}/$
    (kN•m)
    ${T_{12} }/$
    (kN•m)
    $\dfrac{ { {T_{11} } } }{ { {T_{12} } } }$ ${\theta _{ 11 } }/$
    ((°)•m−1)
    ${\theta _{ 12 } }/$
    ((°)•m−1)
    $\dfrac{ { {\theta _{11} } } }{ { {\theta _{12 } } } }$
    取值160.6 174.5 0.92 0.073 0.161 0.45
    下载: 导出CSV

    表  3  ISMMT预测结果与试验结果对比(屈服状态)

    Table  3.   Comparison of the predicted torques and twists from the ISMMT and the experiment (yield state)

    参数 ${T_{ 21 } }/$
    (kN•m)
    ${T_{22 } }/$
    (kN•m)
    $\dfrac{ { {T_{21} } } }{ { {T_{22 } } } }$ ${\theta _{ 21 } }/$
    ((°)•m−1)
    ${\theta _{ 22} }/$
    ((°)•m−1)
    $\dfrac{ { {\theta _{ 21 } } } }{ { {\theta _{ 22 } } } }$
    取值 351.9 337.9 1.04 1.043 0.973 1.07
    下载: 导出CSV

    表  4  ISMMT预测结果与试验结果对比(极限状态)

    Table  4.   Comparison of the predicted torques and twists from the ISMMT and the experiment (limit state)

    参数 ${T_{ 31 } }/$
    (kN•m)
    $ {T_{32}} /$
    (kN•m)
    $\dfrac{ { {T_{ 31} } } }{ { {T_{ 32 } } } }$ $ {\theta _{31}} /$
    ((°)•m−1)
    $ {\theta _{32 }} /$
    ((°)•m−1)
    $\dfrac{ { {\theta _{31} } } }{ { {\theta _{32} } } }$
    取值 354.9 339.5 1.04 1.547 1.590 0.97
    下载: 导出CSV
  • [1] JIANG R J, KWONG AU F T, XIAO Y F. Prestressed concrete girder bridges with corrugated steel webs:review[J]. Journal of Structural Engineering, 2015, 141(2): 04014108.1-04014108.9.
    [2] 李立峰,周聪,王连华,等. 基于纽玛克法的变截面波形钢腹板组合箱梁畸变效应分析[J]. 中国公路学报,2018,31(6): 217-226. doi: 10.3969/j.issn.1001-7372.2018.06.008

    LI Lifeng, ZHOU Cong, WANG Lianhua, et al. Analysis on distortion effect of non-prismatic composite box girders with corrugated steel webs based on newmark method[J]. China Journal of Highway and Transport, 2018, 31(6): 217-226. doi: 10.3969/j.issn.1001-7372.2018.06.008
    [3] LI L F, ZHOU C, WANG L H. Distortion analysis of non-prismatic composite box girders with corrugated steel webs[J]. Journal of Constructional Steel Research, 2018, 147: 74-86. doi: 10.1016/j.jcsr.2018.03.030
    [4] ZHANG B S, CHEN W Z, XU J. Mechanical behavior of prefabricated composite box girders with corrugated steel webs under static loads[J]. Journal of Bridge Engineering, 2018, 23(10): 04018077.1-04018077.11.
    [5] 李宏江,叶见曙,万水,等. 波形钢腹板预应力混凝土箱梁的试验研究[J]. 中国公路学报,2004,17(4): 31-36. doi: 10.3321/j.issn:1001-7372.2004.04.007

    LI Hongjiang, YE Jianshu, WAN Shui, et al. Experimental research on prestressed concrete box girder with corrugated steel webs[J]. China Journal of Highway and Transport, 2004, 17(4): 31-36. doi: 10.3321/j.issn:1001-7372.2004.04.007
    [6] 聂建国,朱力,唐亮. 波形钢腹板的抗剪强度[J]. 土木工程学报,2013,46(6): 97-109.

    NIE Jianguo, ZHU Li, TANG Liang. Shear strength of trapezoidal corrugated steel webs[J]. China Civil Engineering Journal, 2013, 46(6): 97-109.
    [7] ZHANG B S, CHEN W Z, XU J. Shear behaviour of girders with trapezoidal corrugated steel webs-an experimental study[J]. Stahlbau, 2018, 87(8): 810-819. doi: 10.1002/stab.201810602
    [8] 陈宜言. 波形钢腹板预应力混凝土桥设计与施工[M]. 北京: 人民交通出版社, 2009.
    [9] MO Y L, JENG C H, CHANG Y S. Torsional behavior of prestressed concrete box-girder bridges with corrugated steel webs[J]. ACI Structural Journal, 2000, 97(6): 849-859.
    [10] 聂建国,唐亮. 波形钢腹板PC组合箱梁纯扭性能的非线性分析[J]. 中国公路学报,2007,20(5): 71-77. doi: 10.3321/j.issn:1001-7372.2007.05.013

    NIE Jianguo, TANG Liang. Nonlinear analysis of pure torsion property for prestressed concrete composite box girders with corrugated steel webs[J]. China Journal of Highway and Transport, 2007, 20(5): 71-77. doi: 10.3321/j.issn:1001-7372.2007.05.013
    [11] 丁勇,江克斌,周寅智,等. 波形钢腹板PC组合箱梁纯扭作用下抗扭承载力计算模型[J]. 计算力学学报,2013,30(1): 137-142. doi: 10.7511/jslx201301023

    DING Yong, JIANG Kebin, ZHOU Yinzhi, et al. Analytical model for torsional strength of prestressed concrete box-girder with corrugated steel webs[J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 137-142. doi: 10.7511/jslx201301023
    [12] KO H J, MOON J, SHIN Y W, et al. Non-linear analyses model for composite box-girders with corrugated steel webs under torsion[J]. Steel and Composite Structures, 2013, 14(5): 409-429. doi: 10.12989/scs.2013.14.5.409
    [13] HSU T T C, MO Y L. Unified theory of concrete structures[M]. Chichester: John Wiley & Sons, 2010.
    [14] 沈孔健,万水,蒋正文,等. 波形钢腹板混凝土组合箱梁纯扭性能全过程分析[J]. 东南大学学报(自然科学版),2017,47(1): 112-117. doi: 10.3969/j.issn.1001-0505.2017.01.020

    SHEN Kongjian, WAN Shui, JIANG Zhengwen, et al. Whole process analysis on pure torsional behavior of concrete composite box girders with corrugated steel webs[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(1): 112-117. doi: 10.3969/j.issn.1001-0505.2017.01.020
    [15] SHEN K J, WAN S, MO Y L, et al. Behavior of single-box multi-cell box-girders with corrugated steel webs under pure torsion. part II: theoretical model and analysis[J]. Thin-Walled Structures, 2018, 129: 558-572.
    [16] SHEN K J, WAN S, MO Y L, et al. A softened membrane model for composite box-girders with corrugated steel webs under pure torsion[J]. Engineering Structures, 2018, 173: 357-371. doi: 10.1016/j.engstruct.2018.07.021
    [17] JENG C H, HSU T T C. A softened membrane model for torsion in reinforced concrete members[J]. Engineering Structures, 2009, 31(9): 1944-1954. doi: 10.1016/j.engstruct.2009.02.038
    [18] SHEN K J, WAN S, MO Y L, et al. A softened membrane model for prestressed concrete composite box girders with corrugated steel webs under pure torsion[J]. Advances in Structural Engineering, 2019, 22(2): 384-401. doi: 10.1177/1369433218788597
    [19] 周聪,李立峰,王连华,等. 基于软化薄膜元理论的波形钢腹板PC组合箱梁纯扭全过程分析[J]. 土木工程学报,2018,51(10): 97-106.

    ZHOU Cong, LI Lifeng, WANG Lianhua, et al. Full-range analysis of prestressed composite box girders with corrugated steel webs subject to pure torsion based on softened membrane theory[J]. China Civil Engineering Journal, 2018, 51(10): 97-106.
    [20] ZHOU C, LI L F, WANG L H. Improved softened membrane model for prestressed composite box girders with corrugated steel webs under pure torsion[J]. Journal of Constructional Steel Research, 2019, 153: 372-384. doi: 10.1016/j.jcsr.2018.10.023
    [21] 周聪. 波形钢腹板组合箱梁扭转性能研究[D]. 长沙: 湖南大学, 2019.
    [22] JENG C H, CHAO M. Unified rational formula for pre-cracking torsional stiffness of solid and hollow reinforced concrete members[J]. Engineering Structures, 2015, 99(15): 92-107.
    [23] SHEN K J, WAN S, MO Y L, et al. Behavior of single-box multi-cell box-girders with corrugated steel webs under pure torsion. Part Ⅱ: experimental and numerical studies[J]. Thin-Walled Structures, 2018, 129: 542-557.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  142
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-09-22
  • 刊出日期:  2020-09-30

目录

    /

    返回文章
    返回