• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

浮置板轨道减振垫的刚度测试与评价

韦凯 赵泽明 王显 丁文灏 程奕龙 丁德云

韦凯, 赵泽明, 王显, 丁文灏, 程奕龙, 丁德云. 浮置板轨道减振垫的刚度测试与评价[J]. 西南交通大学学报, 2022, 57(4): 848-854, 925. doi: 10.3969/j.issn.0258-2724.20200190
引用本文: 韦凯, 赵泽明, 王显, 丁文灏, 程奕龙, 丁德云. 浮置板轨道减振垫的刚度测试与评价[J]. 西南交通大学学报, 2022, 57(4): 848-854, 925. doi: 10.3969/j.issn.0258-2724.20200190
WEI Kai, ZHAO Zeming, WANG Xian, DING Wenhao, CHENG Yilong, DING Deyun. Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 848-854, 925. doi: 10.3969/j.issn.0258-2724.20200190
Citation: WEI Kai, ZHAO Zeming, WANG Xian, DING Wenhao, CHENG Yilong, DING Deyun. Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 848-854, 925. doi: 10.3969/j.issn.0258-2724.20200190

浮置板轨道减振垫的刚度测试与评价

doi: 10.3969/j.issn.0258-2724.20200190
基金项目: 国家自然科学基金(51978583,51578468,51608460)
详细信息
    作者简介:

    韦凯(1980—),男,研究员,研究方向为高分子材料减振轨道动力特性及车辆-轨道耦合系统动力学,E-mail:wei_mike@163.com

  • 中图分类号: U213.2

Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad

  • 摘要:

    为了科学测试与评价浮置板轨道减振垫刚度,为浮置板轨道静动力学特性分析提供准确的计算参数,通过有限元仿真计算减振垫测试样品的荷载施加范围,应用配备温度箱的力学试验机并结合温频等效原理测试了减振垫静刚度以及5.0、10.0、20.0、30.0 Hz频率下的动刚度;在得到减振垫准确力学参数的基础上,对比分析了采用传统4.0 Hz参数与真实频变参数对浮置板轨道固有频率以及导纳特性的影响. 研究结果表明:浮置板轨道变形、静力学分析以及底座板弯曲变形应分别采用3种不同荷载范围下的静刚度;浮置板轨道调谐频率,安全性以及减振效果应分别采用3种不同预压条件下的动刚度;无(有)车载条件下聚氨酯减振垫4.0 Hz参数得到的浮置板固有频率为27.0 Hz (15.5 Hz),而考虑频变刚度的真实固有频率为31.5 Hz (18.3 Hz);采用4.0 Hz减振垫参数分析浮置板振动传递特性将会低估浮置板轨道固有频率,高估隔振频带及隔振效果;当采用浮置板轨道真实一阶固有频率对应的减振垫参数,其导纳计算结果与考虑减振垫真实频变特性基本一致.

     

  • 图 1  浮置板轨道有限元模型(单位:m)

    Figure 1.  Finite element model of floating slab track (unit:m)

    图 2  减振垫荷载范围

    Figure 2.  Load range of different stiffness damping pad

    图 3  聚氨酯减振垫与橡胶减振垫的试验组装图

    Figure 3.  Test assembly of polyurethane and rubber damping pad

    图 4  减振垫测试荷载-位移曲线

    Figure 4.  Load-displacement curves of damping pad test

    图 5  不同预压荷载条件下的减振垫动刚度

    Figure 5.  Dynamic stiffness of damping pad under different preloading conditions

    图 6  浮置板轨道真实固有频率计算方法

    Figure 6.  Actual inherent frequency calculation method for FST

    图 7  浮置板轨道真实固有振型

    Figure 7.  Actual inherent vibration mode of the floating slab track

    图 8  聚氨酯减振垫浮置板轨道位移导纳

    Figure 8.  Displacement admittance of polyurethane damping pad floating slab track

    图 9  橡胶减振垫浮置板轨道位移导纳

    Figure 9.  Displacement admittance of rubber damping pad floating slab track

    表  1  有限元模型参数

    Table  1.   Parameters of the finite element model

    项目单元类型参数取值
    钢轨Beam4密度/(kg•m−1)60.64
    弹性模量/GPa206
    截面惯性矩/m43.22 × 10−5
    扣件Combin14间距/m0.60
    垂向刚度/(kN•mm−1)35
    减振垫Combin14间距/m0.30
    垂向刚度/(N•mm−3)0.01 ~ 0.03
    浮置板Solid45弹性模量/GPa36
    密度/(kg•m−3)2500
    列车荷载间距/m2.5
    簧下质量/t1.94
    车辆轴重/t16
    下载: 导出CSV

    表  2  振动传递特性分析工况表

    Table  2.   Vibration transfer characteristic calculation cases

    工况预压荷载是否考虑簧下质量减振垫
    类型
    减振垫刚度
    1、2σ0不考虑聚氨酯4.0 Hz 参数真实频变参数
    (见表1
    3、4σ0 +车辆荷载考虑
    5、6σ0不考虑橡胶
    7、8σ0 +车辆荷载考虑
    下载: 导出CSV

    表  3  减振垫浮置板轨道固有频率

    Table  3.   Inherent frequencies of damping pad floating slab

    类型荷载情况减振垫参数对应频率/Hz固有频率/Hz
    聚氨酯减振垫 无车载 4.0 27.0
    31.5 31.5
    有车载 4.0 15.5
    18.3 18.3
    橡胶减振垫 无车载 4.0 19.7
    21.1 21.1
    有车载 4.0 18.8
    20.2 20.2
    下载: 导出CSV
  • [1] 刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6): 547-559. doi: 10.1360/N092015-00334

    LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica), 2016, 46(6): 547-559. doi: 10.1360/N092015-00334
    [2] 韦凯,王丰,牛澎波,等. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报,2018,40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015

    WEI Kai, WANG Feng, NIU Pengbo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the China Railway Society, 2018, 40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015
    [3] 丁德云,刘维宁,张宝才,等. 浮置板轨道的模态分析[J]. 铁道学报,2008,30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011

    DING Deyun, LIU Weining, ZHANG Baocai, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011
    [4] CUI F, CHEW C H. The effectiveness of floating slab track system:part I receptance methods[J]. Applied Acoustics, 2000, 61(4): 441-453. doi: 10.1016/S0003-682X(00)00014-1
    [5] 耿传智,楼梦麟. 浮置板轨道结构系统振动模态分析[J]. 同济大学学报(自然科学版),2006,34(9): 1201-1205.

    GENG Chuanzhi, LOU Menglin. Vibration model analysis of floating slab track system[J]. Journal of Tongji University (Natural Science), 2006, 34(9): 1201-1205.
    [6] 侯德军,雷晓燕,刘庆杰. 浮置板轨道系统动力响应分析[J]. 铁道工程学报,2006,23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005

    HOU Dejun, LEI Xiaoyan, LIU Qingjie. Analysis of dynmical responses of floating slab track system[J]. Journal of Railway Engineering Society, 2006, 23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005
    [7] LI M H, MA M, LIU W N, et al. Influence of static preload on vibration reduction effect of floating slab tracks[J]. Journal of Vibration and Control, 2019, 25(6): 1148-1163.
    [8] 葛辉,吴梦瑶,刘子煊,等. 浮置板板下胶垫的温变特性及其对轮轨系统的影响[J]. 铁道标准设计,2017,61(3): 51-55.

    GE Hui, WU Mengyao, LIU Zixuan, et al. Temperature variant characteristics of rubber pad under floating slab and their impact on vehicle-track coupled system[J]. Railway Standard Design, 2017, 61(3): 51-55.
    [9] WEI K, DOU Y L, WANG F. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863.
    [10] WEI K, ZHAO Z M, REN J J, et al. High-speed vehicle-slab track coupled vibration analysis of the viscoelastic-plastic dynamic properties of rail pads under different preloads and temperatures[J]. Vehicle System Dynamics, 2021, 59(2): 171-202.
    [11] Acoustics, Noise Control and Vibration Engineering Standards Committee. Mechanical vibration—resilient elements used in railvay tracks. part 7: laboratory test procedures for resilient elements of floating slab track systemns: DIN 45673-7 [S]. Berlin: [s.n.], 2008.
    [12] 李霞. 地铁钢轨波磨形成机理研究[D]. 成都: 西南交通大学, 2012.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  113
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回