Stiffness Test and Evaluation Method of Floating Slab Track Damping Pad
-
摘要:
为了科学测试与评价浮置板轨道减振垫刚度,为浮置板轨道静动力学特性分析提供准确的计算参数,通过有限元仿真计算减振垫测试样品的荷载施加范围,应用配备温度箱的力学试验机并结合温频等效原理测试了减振垫静刚度以及5.0、10.0、20.0、30.0 Hz频率下的动刚度;在得到减振垫准确力学参数的基础上,对比分析了采用传统4.0 Hz参数与真实频变参数对浮置板轨道固有频率以及导纳特性的影响. 研究结果表明:浮置板轨道变形、静力学分析以及底座板弯曲变形应分别采用3种不同荷载范围下的静刚度;浮置板轨道调谐频率,安全性以及减振效果应分别采用3种不同预压条件下的动刚度;无(有)车载条件下聚氨酯减振垫4.0 Hz参数得到的浮置板固有频率为27.0 Hz (15.5 Hz),而考虑频变刚度的真实固有频率为31.5 Hz (18.3 Hz);采用4.0 Hz减振垫参数分析浮置板振动传递特性将会低估浮置板轨道固有频率,高估隔振频带及隔振效果;当采用浮置板轨道真实一阶固有频率对应的减振垫参数,其导纳计算结果与考虑减振垫真实频变特性基本一致.
Abstract:The purpose of this study was to test and evaluate the stiffness of the damping pad of a floating slab track and to provide accurate calculation parameters for the dynamic simulation analysis of the floating track. In this study, the load application range of the damping pad test samples was calculated in a finite element simulation, and the static stiffness and dynamic stiffness (5.0、10.0、20.0、30.0 Hz) of the damping pad were tested and evaluated using a mechanical testing machine equipped with a temperature control box and combined with time-temperature superposition. On the basis of the actual mechanical characteristics of the anti-vibration damping pads, the effects of using traditional 4.0 Hz parameters and actual frequency-dependent parameters on the simulated natural frequency and admittance characteristics of the floating slab track were compared and analyzed. The results show that the static stiffness of damping pads should be tested in three different load ranges according to the deformation, static analysis and analysis of the bending deformation of the base plate. The dynamic stiffness of damping pads should be tested under three different preloading conditions according to the tuning frequency, safety and insertion loss analysis of the floating slab track. In the case of no vehicle load (under a vehicle load), the natural frequency of the floating slab obtained using the 4.0 Hz parameters of the polyurethane damping pad is 27.0 Hz (15.5 Hz) , whereas the true natural frequency after considering the frequency-dependent stiffness of the damping pad is 31.5 Hz (18.3 Hz) . The natural frequency of the floating slab track would be underestimated and the vibration isolation frequency band and vibration isolation effect would be overestimated if parameters obtained at 4.0 Hz are used to analyze the vibration transfer characteristics of the floating slab track. The admittance results obtained with the parameters at the first-order frequency of the floating slab track are basically consistent with those obtained using the actual frequency-dependent characteristics.
-
表 1 有限元模型参数
Table 1. Parameters of the finite element model
项目 单元类型 参数 取值 钢轨 Beam4 密度/(kg•m−1) 60.64 弹性模量/GPa 206 截面惯性矩/m4 3.22 × 10−5 扣件 Combin14 间距/m 0.60 垂向刚度/(kN•mm−1) 35 减振垫 Combin14 间距/m 0.30 垂向刚度/(N•mm−3) 0.01 ~ 0.03 浮置板 Solid45 弹性模量/GPa 36 密度/(kg•m−3) 2500 列车荷载 间距/m 2.5 簧下质量/t 1.94 车辆轴重/t 16 表 2 振动传递特性分析工况表
Table 2. Vibration transfer characteristic calculation cases
工况 预压荷载 是否考虑簧下质量 减振垫
类型减振垫刚度 1、2 σ0 不考虑 聚氨酯 4.0 Hz 参数真实频变参数
(见表1)3、4 σ0 +车辆荷载 考虑 5、6 σ0 不考虑 橡胶 7、8 σ0 +车辆荷载 考虑 表 3 减振垫浮置板轨道固有频率
Table 3. Inherent frequencies of damping pad floating slab
类型 荷载情况 减振垫参数对应频率/Hz 固有频率/Hz 聚氨酯减振垫 无车载 4.0 27.0 31.5 31.5 有车载 4.0 15.5 18.3 18.3 橡胶减振垫 无车载 4.0 19.7 21.1 21.1 有车载 4.0 18.8 20.2 20.2 -
[1] 刘维宁,马蒙,刘卫丰,等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学,2016,46(6): 547-559. doi: 10.1360/N092015-00334LIU Weining, MA Meng, LIU Weifeng, et al. Overview on current research of environmental vibration influence induced by urban mass transit in China[J]. Scientia Sinica (Technologica), 2016, 46(6): 547-559. doi: 10.1360/N092015-00334 [2] 韦凯,王丰,牛澎波,等. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报,2018,40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015WEI Kai, WANG Feng, NIU Pengbo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the China Railway Society, 2018, 40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015 [3] 丁德云,刘维宁,张宝才,等. 浮置板轨道的模态分析[J]. 铁道学报,2008,30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011DING Deyun, LIU Weining, ZHANG Baocai, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(3): 61-64. doi: 10.3321/j.issn:1001-8360.2008.03.011 [4] CUI F, CHEW C H. The effectiveness of floating slab track system:part I receptance methods[J]. Applied Acoustics, 2000, 61(4): 441-453. doi: 10.1016/S0003-682X(00)00014-1 [5] 耿传智,楼梦麟. 浮置板轨道结构系统振动模态分析[J]. 同济大学学报(自然科学版),2006,34(9): 1201-1205.GENG Chuanzhi, LOU Menglin. Vibration model analysis of floating slab track system[J]. Journal of Tongji University (Natural Science), 2006, 34(9): 1201-1205. [6] 侯德军,雷晓燕,刘庆杰. 浮置板轨道系统动力响应分析[J]. 铁道工程学报,2006,23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005HOU Dejun, LEI Xiaoyan, LIU Qingjie. Analysis of dynmical responses of floating slab track system[J]. Journal of Railway Engineering Society, 2006, 23(8): 18-24. doi: 10.3969/j.issn.1006-2106.2006.08.005 [7] LI M H, MA M, LIU W N, et al. Influence of static preload on vibration reduction effect of floating slab tracks[J]. Journal of Vibration and Control, 2019, 25(6): 1148-1163. [8] 葛辉,吴梦瑶,刘子煊,等. 浮置板板下胶垫的温变特性及其对轮轨系统的影响[J]. 铁道标准设计,2017,61(3): 51-55.GE Hui, WU Mengyao, LIU Zixuan, et al. Temperature variant characteristics of rubber pad under floating slab and their impact on vehicle-track coupled system[J]. Railway Standard Design, 2017, 61(3): 51-55. [9] WEI K, DOU Y L, WANG F. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863. [10] WEI K, ZHAO Z M, REN J J, et al. High-speed vehicle-slab track coupled vibration analysis of the viscoelastic-plastic dynamic properties of rail pads under different preloads and temperatures[J]. Vehicle System Dynamics, 2021, 59(2): 171-202. [11] Acoustics, Noise Control and Vibration Engineering Standards Committee. Mechanical vibration—resilient elements used in railvay tracks. part 7: laboratory test procedures for resilient elements of floating slab track systemns: DIN 45673-7 [S]. Berlin: [s.n.], 2008. [12] 李霞. 地铁钢轨波磨形成机理研究[D]. 成都: 西南交通大学, 2012. 期刊类型引用(9)
1. 顾秋涵,赵文彬,郑欣,徐斌. 考虑双维波动性的地铁冲击负荷网储协同平抑策略. 电工电能新技术. 2024(01): 32-42 . 百度学术
2. 王奎. 地铁主变压器容量确定方法研究. 铁道建筑技术. 2024(06): 16-19+29 . 百度学术
3. 蒋忠浩. 高速铁路牵引变电所可靠性评估技术研究. 设备管理与维修. 2023(08): 44-46 . 百度学术
4. 宋立立,孙妍. 基于决策树的实民用建筑供电可靠性智能评估算法. 粉煤灰综合利用. 2023(06): 128-133 . 百度学术
5. 李辉,保富,陆光前,闵侯,何磊. 配网供电可靠性多维度大数据分析方法研究. 信息安全研究. 2022(01): 79-84 . 百度学术
6. 杨茜茜,耿丽松,张宇. 光纤陀螺冗余可修复系统可靠性评估. 中国测试. 2022(03): 150-156 . 百度学术
7. 李国玉,张戬,孟勇亮. 基于Bagging算法的地铁供电系统故障诊断方法. 自动化技术与应用. 2022(09): 110-112 . 百度学术
8. 范广. 试论地铁供电系统中环网供电技术及环网电缆安装施工. 新型工业化. 2022(10): 17-20+33 . 百度学术
9. 陈建忠. 地铁供电系统中压环网结构及继电保护优化分析——以福州地铁轨道交通为例. 光源与照明. 2022(12): 213-215 . 百度学术
其他类型引用(5)
-