• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

跨断层桥梁抗震综述

贾宏宇 杨健 郑史雄 赵灿晖 杜修力

贾宏宇, 杨健, 郑史雄, 赵灿晖, 杜修力. 跨断层桥梁抗震综述[J]. 西南交通大学学报, 2021, 56(5): 1075-1093. doi: 10.3969/j.issn.0258-2724.20200162
引用本文: 贾宏宇, 杨健, 郑史雄, 赵灿晖, 杜修力. 跨断层桥梁抗震综述[J]. 西南交通大学学报, 2021, 56(5): 1075-1093. doi: 10.3969/j.issn.0258-2724.20200162
JIA Hongyu, YANG Jian, ZHENG Shixiong, ZHAO Canhui, DU Xiuli. A Review on Aseismic Bridges Crossing Fault Rupture Regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093. doi: 10.3969/j.issn.0258-2724.20200162
Citation: JIA Hongyu, YANG Jian, ZHENG Shixiong, ZHAO Canhui, DU Xiuli. A Review on Aseismic Bridges Crossing Fault Rupture Regions[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1075-1093. doi: 10.3969/j.issn.0258-2724.20200162

跨断层桥梁抗震综述

doi: 10.3969/j.issn.0258-2724.20200162
基金项目: 国家自然科学基金(51308465);四川省科技计划(2019YJ0243,2019YFG0460);中国铁路总公司重大系统工程(P2018G007)
详细信息
    作者简介:

    贾宏宇(1981—),男,副教授,博士后,硕士生导师,研究方向为桥梁抗震,E-mail:Hongyu1016@swjtu.edu.cn

    通讯作者:

    赵灿晖(1970—),男,教授,博士,博士生导师,研究方向为桥梁抗震,E-mail:zch2887@swjtu.edu.cn

  • 中图分类号: TU311.3

A Review on Aseismic Bridges Crossing Fault Rupture Regions

  • 摘要: 在交通强国战略深入推进的时代背景下,中国公路、铁路网的发展使得跨越断层修建桥梁不可避免,川藏铁路的规划、设计和修建更让这个问题日益突出. 同时,公路和铁路抗震规范采用避让断层造桥的规定与无法避让造桥的实际情况之间的矛盾也日渐凸显. 在地震作用下跨越活动断层的桥梁比非跨越断层桥梁具有更复杂的受力特点、破坏形式和破坏机理,我国对跨断层桥梁的研究尚处于起步阶段,可供参考的相关文献资料、工程实例以及抗震设计规范缺乏. 为了确保跨断层桥梁的安全性,基于国内外对跨断层桥梁的研究现状,归纳总结了活动断层特征、断层处地震动、跨断层桥梁的破坏特征、跨断层桥梁分析方法以及跨断层桥梁概念设计措施. 梳理了当前跨越断层桥梁抗震存在的问题,并对未来跨断层桥梁的研究进行了展望,指出断层地震空间性、跨断层桥梁破坏机理、多灾害对跨断层桥梁的影响、跨断层桥梁快速抢修技术和人工智能技术在跨断层桥梁抗震中的应用将是未来发展方向,为未来跨断层桥梁抗震设计、性能评估和规范拟订提供参考.

     

  • 图 1  上盘效应(几何表示)

    Figure 1.  Hanging wall effect (geometric representation)

    图 2  断层类型及特征

    Figure 2.  Fault types and characteristics

    图 3  1999年台湾集集地震TCU084台站记录的UNE三向滑冲效应(U:竖向;N:北;E:东)

    Figure 3.  Sling step effect in UNE directions recorded by TCU084 station in Jiji earthquake in Taiwan,1999 (U: vertical; N: north; E: east)

    图 4  逆冲断层破裂方向性

    Figure 4.  Directivity and sliding effect inthrust fault mechanism

    图 5  帕哈罗河桥(单位:m)

    Figure 5.  Pajaro River Bridge (unit:m)

    图 6  丰南县稻地村桥

    Figure 6.  Daodi Bridge in Fengnan county

    图 7  滏阳河后辛庄桥

    Figure 7.  Hou xin zhuang Bridge in Fuyang river

    图 8  阿里菲耶高架桥

    Figure 8.  Arifiye Overpass

    图 9  乌石大桥(单位: m)

    Figure 9.  Wu-Shi Bridge (unit: m)

    图 10  石围大桥

    Figure 10.  Shi-Wei Bridge

    图 11  明津大桥

    Figure 11.  Ming-tsu Bridge

    图 12  震后名竹大桥

    Figure 12.  Mingzhu Bridge after earthquake

    图 13  映秀顺河大桥

    Figure 13.  Yinxius Hunhe Bridge

    图 14  小鱼洞大桥

    Figure 14.  Xiaoyudong Bridge

    图 15  虹口高原桥

    Figure 15.  Hongkou Gaoyuan Bridge

    图 16  百花大桥

    Figure 16.  Baihua Bridge

    图 17  断层位移危害性分析方法流程

    Figure 17.  Flowchart of PFDHA

    图 18  三维非线性有限元模型

    Figure 18.  3D nonlinear finite element model

    图 19  桥梁模型及假定断层位置

    Figure 19.  Positions of bridge model and assumed fault

    图 20  多级防落梁措施(单位:cm)

    Figure 20.  Multi-level unseating prevention measures of bridge (unit: cm)

    图 21  多级设防

    Figure 21.  Multi-level fortification measure

    图 22  断层阻断技术

    Figure 22.  Fault-blocked technique

  • 马腾. 川藏铁路简支梁桥地震易损性及风险评估研究[D]. 成都: 西南交通大学, 2016.
    杨平,杨国静,曾永平. 川藏铁路简支梁桥地震易损性及适应性分析[J]. 铁道工程学报,2015,32(12): 51-57. doi: 10.3969/j.issn.1006-2106.2015.12.011

    YANG Ping, YANG Guojing, ZENG Yongping. Analysis of seismic vulnerability and adaptation of simply-supported girder bridge on Sichuan—Tibet railway[J]. Journal of Railway Engineering Society, 2015, 32(12): 51-57. doi: 10.3969/j.issn.1006-2106.2015.12.011
    刘闯,冯忠居,苏航州,等. 跨活动断层桥梁抗震技术的探索[J]. 公路,2018,63(11): 114-119.

    LIU Chuang, FENG Zhongju, SU Hangzhou, et al. Exploration in seismic technology of bridge across active fault[J]. Highway, 2018, 63(11): 114-119.
    帅少军,戴万江,罗嗣碧. 跨断裂带桥梁设计研究[J]. 公路,2016,61(4): 127-130.

    SHUAI Shaojun, DAI Wanjiang, LUO Sibi. Study on the design of bridge across fracture zone[J]. Highway, 2016, 61(4): 127-130.
    YANG S, MAVROEIDIS G P. Bridges crossing fault rupture zones:a review[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 545-571. doi: 10.1016/j.soildyn.2018.03.027
    戴胜勇, 陈克坚, 陈建峰, 等. 川藏线“重大桥梁工程”选址原则及实践[C]//2016学术交流会议. 成都: 中国学术期刊电子出版社, 2016: 394-398.
    夏修身,戴胜勇,陈兴冲,等. 川藏铁路大跨度桥梁抗震设防标准研究[J]. 铁道学报,2016,38(10): 85-89. doi: 10.3969/j.issn.1001-8360.2016.10.012

    XIA Xiushen, DAI Shengyong, CHEN Xingchong, et al. Seismic design criterion for long-span bridges of Sichuan—Tibet railway[J]. Journal of the China Railway Society, 2016, 38(10): 85-89. doi: 10.3969/j.issn.1001-8360.2016.10.012
    LÜ Q, CHEN P, KIM B, et al. Probabilistic assessment of seismic stability of a rock slope by combining the simulation of stochastic ground motion with permanent displacement analysis[J]. Engineering Geology, 2019, 260: 105210.1-105210.11. doi: 10.1016/j.enggeo.2019.105210
    TODOROVSKA M I, TRIFUNAC M D, LEE V W. Shaking hazard compatible methodology for probabilistic assessment of permanent ground displacement across earthquake faults[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(6): 586-597. doi: 10.1016/j.soildyn.2006.11.002
    GOEL R K, CHOPRA A K. Nonlinear analysis of ordinary bridges crossing fault rupture zones[J]. Journal of Bridge Engineering, 2009, 14(3): 216-224. doi: 10.1061/(ASCE)1084-0702(2009)14:3(216)
    贾宏宇. 非平稳地震激励下山区高墩桥梁随机响应计算理论及应用研究[D]. 成都: 西南交通大学, 2013.
    JIA H, LAN X, ZHENG S, et al. Assessment on required separation length between adjacent bridge segments to avoid pounding[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 398-407. doi: 10.1016/j.soildyn.2019.01.031
    JIA H, ZHANG D, ZHENG S, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations:nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69. doi: 10.1016/j.soildyn.2013.05.001
    ZHANG D, JIA H, ZHENG S, et al. A highly efficient and accurate stochastic seismic analysis approach for structures under tridirectional nonstationary multiple excitations[J]. Computers & Structures, 2014, 145: 23-35.
    NAKANOT, OHTAY. Non-linear dynamic response analysis of bridge crossing earthquake fault rupture plane[C]//14th International Engineering Conference. Beijing: [s.n.], 2008: 208.
    GARINI E, GAZETAS G, ANASTASOPOULOS I. Evidence of significant forward rupture directivity aggravated by soil response in an Mw 6 earthquake and the effects on monuments[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(13): 2103-2120.
    樊剑,涂家祥,吕超,等. 采用时频滤波技术的近断层脉冲地震人工模拟[J]. 华中科技大学学报(自然科学版),2008,36(11): 116-119.

    FAN Jian, TU Jiaxiang, LÜ Chao, et al. Artificial simulation of near fault pulse earthquake using time-frequency filtering technology[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(11): 116-119.
    曾亚光. 跨断层深水斜拉桥非线性地震响应特性及损伤评估[D]. 北京: 北京交通大学, 2016.
    LIN Y, ZONG Z, TIAN S, et al. A new baseline correction method for near-fault strong-motion records based on the target final displacement[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 27-37. doi: 10.1016/j.soildyn.2018.06.036
    ZHANG F, LI S, WANG J, et al. Effects of fault rupture on seismic responses of fault-crossing simply-supported highway bridges[J]. Engineering Structures, 2020, 206: 110104.1-110104.
    OSMAR R. Bridge design for earthquake fault crossing: synthesis of design issues and strategies[D]. San Luis Obispo: California Polytechnic State University, 2012.
    RAKESH K. G, ANIL K. C. Analysis of ordinary bridges crossing fault-rupture zones[R]. Berkeley: California Department of Transportation Earthquake Engineering Research Center, 2008.
    惠迎新,台玉吉,王克海,等. 跨断层桥梁抗震若干问题探讨[J]. 地震工程学报,2017,39(5): 870-875. doi: 10.3969/j.issn.1000-0844.2017.05.0870

    HUI Yinxin, TAI Yuji, WANG Kehai, et al. Discussion about earthquake resistance of the bridges crossing the active fault[J]. China Earthquake Engineering Journal, 2017, 39(5): 870-875. doi: 10.3969/j.issn.1000-0844.2017.05.0870
    王海云,谢礼立. 近断层地震动模拟现状[J]. 地球科学进展,2008,23(10): 1043-1049.

    WANG Haiyun, XIE Lili. A review on near-fault ground motion simulation[J]. Advances in Earth Science, 2008, 23(10): 1043-1049.
    田玉基,杨庆山,卢明奇. 近断层脉冲型地震动的模拟方法[J]. 地震学报,2007,29(1): 77-84. doi: 10.3321/j.issn:0253-3782.2007.01.009

    TIAN Yuji, YANG Qinshan, LU Mingqi. Simulation method of near-fault impulse ground motion[J]. Journal of Seismology, 2007, 29(1): 77-84. doi: 10.3321/j.issn:0253-3782.2007.01.009
    陈志强,郑史雄,陈志伟. 近断层脉冲方向性对大跨斜拉桥地震响应的影响[J]. 铁道科学与工程学报,2018,15(12): 3127-3134.

    CHEN Zhiqiang, ZHENG Shixiong, CHEN Zhiwei. Influence of near fault pulse directionality on seismic response of long-span cable-stayed bridge[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3127-3134.
    SUN Xiaodan, STEPHEN H H, SANAZ R. Ground motion simulation for the 23 August 2011,mineral,Virginia earthquake using physics-based and stochastic broadband methods[J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2641-2661. doi: 10.1785/0120140311
    何仲太,马保起,李玉森. 汶川地震地表破裂带宽度与断层上盘效应[J]. 北京大学学报(自然科学版),2012,48(6): 886-894.

    HE Zhongtai, MA Baoqi, LI Yusen. Width of surface fracture zone and hanging wall effect of fault in Wenchuan earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(6): 886-894.
    彭磊. 汶川地震上盘效应的研究[D]. 北京: 中国地震局工程力学研究所, 2011.
    李爽,谢礼立,郝敏. 上盘效应对工程结构位移反应影响分析[J]. 西安建筑科技大学学报(自然科学版),2006,38(6): 823-827. doi: 10.3969/j.issn.1006-7930.2006.06.018

    LI Shuang, XIE Lili, HAO Min. Analysis of influence of hanging wall effect on displacement response of engineering structures[J]. Journal of Xi’an University of architecture and Technology (Natural Science Edition), 2006, 38(6): 823-827. doi: 10.3969/j.issn.1006-7930.2006.06.018
    陶夏新,王国新. 近场强地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报,2003,25(2): 191-198.

    TAO Xiaxin, WANG Guoxin. Expression of directivity effect and hanging wall effect in near-field strong ground motion simulation[J]. Journal of Seismology, 2003, 25(2): 191-198.
    俞言祥,高孟潭. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,2001,23(6): 615-621. doi: 10.3321/j.issn:0253-3782.2001.06.007

    YU Yanxiang, GAO mengtan. Hanging wall effect of near-field vibration of Jiji earthquake in Taiwan[J]. Journal of Seismology, 2001, 23(6): 615-621. doi: 10.3321/j.issn:0253-3782.2001.06.007
    KHOSROW T S, FUMIO Y. Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi,Taiwan earthquake[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(14): 2197-2219.
    董文悝,高广运,宋健,等. 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报(工学版),2018,52(9): 1651-1657.

    DONG Wenyi, GAO Guangyun, SONG Jian, et al. Influence of near fault sliding and thrusting pulse ground motion on site liquefaction[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(9): 1651-1657.
    周继磊,杨迪雄,陈国海,等. 近断层强震作用结构动力可靠度分析[J]. 建筑结构学报,2016,37(7): 136-143.

    ZHOU Jilei, YANG Dixiong, CHEN Guohai, et al. Dynamic reliability analysis of structures subjected to near-fault strong ground motions[J]. Journal of Building Structures, 2016, 37(7): 136-143.
    CHEN X, LIU Y, ZHOU B, et al. Seismic response analysis of intake tower structure under near-fault ground motions with forward-directivity and fling-step effects[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106098.1-106098.13.
    EROL K, SASHI K. Kunnath. effects of fling step and forward directivity on seismic response of buildings[J]. Earthquake Spectra, 2020, 22(2): 367-390.
    DICLELI M, BUDDARAM S. Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect[J]. Engineering Structures, 2007, 29(1): 21-32. doi: 10.1016/j.engstruct.2006.04.004
    MUKHOPADHYAY S, GUPTA V K. Directivity pulses in near-fault ground motions-II:estimation of pulse parameters[J]. Soil Dynamics and Earthquake Engineering, 2013, 50: 38-52. doi: 10.1016/j.soildyn.2013.02.019
    KULELI M, NAGAUAMA T. A robust structural parameter estimation method using seismic response measurements[J]. Structural Control and Health Monitoring, 2020, 27(3): 1-23.
    LIN Y, ZONG Z, BI K, et al. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault[J]. Engineering Structures, 2020, 205: 110105.1-110105.21.
    惠迎新. 跨断层桥梁地震动输入及结构地震响应研究[D]. 南京: 东南大学, 2015.
    王文明,易思银,田利,等. 跨越断层地震动对结构地震反应的研究进展[J]. 地震工程学报,2017,39(3): 578-586.

    WANG Wenming, YI Siyin, TIAN Li, et al. Research progress of structural seismic response to cross fault ground motion[J]. Journal of Earthquake Engineering, 2017, 39(3): 578-586.
    贾俊峰,杜修力,韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报,2015,36(1): 1-12.

    JIA Junfeng, DU Xiuli, HAN Qiang. Research progress of near fault ground motion characteristics and its influence on engineering structure[J]. Journal of Architectural Structure, 2015, 36(1): 1-12.
    KAWASHIMA K. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce,Turkey earthquakes and the 1999 Chi-Chi,Taiwan earthquake[J]. Structural Engineering (Earthquake Engineering), 2002, 19(2): 179-197. doi: 10.2208/jsceseee.19.179s
    LAWSON A C. The California earthquake of april 18, 1906: report of the state earthquake investigation commission[M]. Washington D. C.: Carnegie Institution of Washington, 1908.
    ERDIK M, AYDINOGLU N, UCKAN E, et al. The 1999 Turkey earthquakes: bridge performance and remedial actions learning from earthquake series IV[M]. Oakland: Earthquake Engineering Research Institute, 2003.
    PAMUK A, KALKAN E, LING H I. Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7): 581-589.
    WALLACE J W, EBERHARD M O, HWANG S J, et al. Highway bridges[J]. Earthquake Spectra, 2001, 17(S1): 131-152.
    KOSA K, TAZAKI K, YAMAGUCHI E. Mechanism of damage to Shiwei Bridge caused by 1999 Chi-Chi earthquake[J]. Structural Engineering (Earthquake Engineering), 2002, 19(2): 221-226. doi: 10.2208/jsceseee.19.221s
    郑水明,周宝峰,温瑞智,等. 强震动加速度记录基线校正问题探讨[J]. 大地测量与地球动力学,2010,30(3): 47-50.

    ZHENG Shuiming, ZHOU Baofeng, WEN Ruizhi, et al. Discussion on baseline correction of strong motion acceleration records[J]. Geodesy and Geodynamics, 2010, 30(3): 47-50.
    NOVIKOVA E I, TRIFUNAC M D. Digital instrument response correction for the force-balance accelerometer[J]. Earthquake Spectra, 1992, 8(3): 429-442.
    IWAN W D, MOSER M A, PENG C Y. Some observations on strong motion earthquake measurement using a digtal accelerograph[J]. Bulletin of the Seismological Society of America, 1985, 75(5): 1225-1246.
    王国权,周锡元. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质,2004,26(1): 1-14.

    WANG Guoquan, ZHOU Xiyuan. 921 baseline correction of near fault strong earthquake records of Taiwan Jiji earthquake[J]. Seism Geology, 2004, 26(1): 1-14.
    吴先敏,牛超,卞晶,等. 地震波基线漂移校正及结构地震响应分析[J]. 水资源与水工程学报,2019,30(2): 186-190.

    WU Xianmin, NIU Chao, BIAN Jing, et al. Baseline drift correction of seismic wave and structural seismic response analysis[J]. Journal of Water Resources and Water Engineering, 2019, 30(2): 186-190.
    张斌,肖亮,俞言祥. 近断层强震记录基线校正的改进方法[J]. 振动与冲击,2020,39(5): 137-142.

    ZHANG Bin, XIAO Liang, YU Yanxiang. An improved method for baseline correction of near fault strong earthquake records[J]. Vibration and Shock, 2020, 39(5): 137-142.
    于海英,周宝峰,杨程,等. 芦山7.0级地震及余震强震动记录初步分[J]. 地震工程与工程振动,2014,34(增刊1): 153-160.

    YU Haiying, ZHOU Baofeng, YANY Cheng, et al. Preliminary analysis of strong motion records of Lushan M7.0 earthquake and aftershocks[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(S1): 153-160.
    谢礼立, 于双久.强震观测与分析原理[M].北京: 地震出版社, 1982.
    荣棉水,彭艳菊,喻畑,等. 近断层强震观测记录基线校正的优化方法[J]. 土木工程学报,2014,47(增刊2): 300-306.

    RONG mianshui, PENG Yanju, YU Tian, et al. Optimization method for baseline correction of near fault strong earthquake observation records[J]. Journal of Civil Engineering, 2014, 47(S2): 300-306.
    陈勇,陈鲲,俞言祥. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动,2007,27(4): 1-7.

    CHEN Yong, CHEN Kun, YU Yanxiang. Baseline correction method for studying near fault strong earthquake records using Jiji main earthquake records[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(4): 1-7.
    BOORE D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1199-1211.
    贾宏宇,陈航,张克跃. 多维多点非平稳地震波合成[J]. 西南交通大学学报,2017,52(4): 663-670. doi: 10.3969/j.issn.0258-2724.2017.04.003

    JIA Hongyu, CHEN Hang, ZHANG Keyue. Synthesis of multi-dimensional and multi-point nonstationary seismic waves[J]. Journal of Southwest Jiaotong University, 2017, 52(4): 663-670. doi: 10.3969/j.issn.0258-2724.2017.04.003
    罗奇峰,胡聿贤. 改进的经验格林函数法和卢龙近场加速度合成[J]. 地震工程与工程振动,1990,10(3): 1-13.

    LUO Qifeng, HU Yuxian. In improved empirical green function method and synthesis of near-field accelerograms in Lu Long earthquake[J]. Earthquake Engineering and Engineering Vibration, 1990, 10(3): 1-13.
    王海云. 近场强地震动预测的有限断层震源模型[D]. 北京: 中国地震局工程力学研究所, 2004.
    张晓志,谢礼立,王海云,等. 某正倾滑断层引起的近断层强地面运动的有限元数值模拟[J]. 地震工程与工程振动,2006,26(6): 11-16. doi: 10.3969/j.issn.1000-1301.2006.06.003

    ZHANG Xiaozhi, XIE Lili, WANG Haiyun, et al. Finite element numerical simulation of near fault strong ground motion caused by a normal dip slip fault[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(6): 11-16. doi: 10.3969/j.issn.1000-1301.2006.06.003
    潘波,许建东,关口春子,等. 北京地区近断层强地震动模拟[J]. 地震地质,2006,28(4): 623-634. doi: 10.3969/j.issn.0253-4967.2006.04.010

    PAN Bo, XU Jiandong, HARUKO Sekigguchi, et al. Simulation of near fault strong ground motion in Beijing area[J]. Seismology and Egology, 2006, 28(4): 623-634. doi: 10.3969/j.issn.0253-4967.2006.04.010
    YOUNGS R R, ARABASZ W J, ANDERSON R E, et al. A methodology for probabilistic fault displacement hazard analysis (PFDHA)[J]. Earthquake Spectra, 2003, 19(1): 191-219. doi: 10.1193/1.1542891
    BAZZURRO P , CORNELL C A. Seismic hazard analysis of nonlinear structures I: methodology[J]. Journal of Structural Engineering, 1994, 120(11): 3320-3344.
    KIM J M, SITAR N. Probabilistic evaluation of seismically induced permanent deformation of slopes[J]. Soil Dynamics and Earthquake Engineering, 2013, 44: 67-77. doi: 10.1016/j.soildyn.2012.09.001
    贾宏宇,杜修力,李晰,等. 地震作用下高墩铁路桥梁梁体碰撞间隙宽度需求机理分析[J]. 工程力学,2017,34(2): 207-215.

    JIA Hongyu, DU Xiuli, LI Xi, et al. Analysis on the mechanism of the width demand of the collision gap of the high pier railway bridge under the earthquake action[J]. Engineering Mechanics, 2017, 34(2): 207-215.
    贾宏宇,郑史雄. 直接求解多维多点地震动方程的虚拟激励法[J]. 工程力学,2013,30(3): 341-346.

    JIA Hongyu, ZHENG Shixiong. Pseudo excitation method for solving multi-dimensional and multi-point ground motion equations directly[J]. Engineering Mechanics, 2013, 30(3): 341-346.
    GOEL R K, CHOPRA A K. Linear analysis of ordinary bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2009, 14(3): 203-215. doi: 10.1061/(ASCE)1084-0702(2009)14:3(203)
    KONAKLI K, KIUREGHIAN A D. Simulation of spatially varying ground motions including incoherence, wave-passage and differential site-response effects[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 495-513.
    ANASTASOPOULOS I, GAZETAS G, DROSOS V, et al. Design of bridges against large tectonic deformation[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 345-368. doi: 10.1007/s11803-008-1001-x
    SAIIDI M S, ASHKAN V, HOON C, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2014, 19(8): A4014003.
    SHANTZ T, ALAMEDDINE F, SIMEK J, et al. Evaluation of fault rupture hazard mitigation[C]//7th National Seismic Conference on Bridges and Highways. Oakland: Elsevier Press, 2013: 1011-1023.
    TODOROVSKA M I, TRIFUNAC M D. Selection of comprehensive design criteria for highway bridges in the vicinity of and crossing active faults, 07-24[R]. Los Angeles: University of Southern California, 2013.
    GAZETAS G, ZARZOURAS O, DROSOS V, et al. Bridge-pier caisson foundations subjected to normal and thrust faulting:physical experiments versus numerical analysis[J]. Meccanica, 2015, 50(2): 341-354. doi: 10.1007/s11012-014-9997-7
    PARK S W, GHASEMI H, SHEN J, et al. Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(13): 1249-1270.
    UCAK A, MAVROEIDIS G P, TSOPELAS P. Behavior of a seismically isolated bridge crossing a fault rupture zone[J]. Soil Dynamics and Earthquake Engineering, 2014, 57: 164-178. doi: 10.1016/j.soildyn.2013.10.012
    YANG S, MAVROEIDIS G P, UCAK A, et al. Effect of ground motion filtering on the dynamic response of a seismically isolated bridge with and without fault crossing considerations[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 183-191. doi: 10.1016/j.soildyn.2016.10.001
    LUO Z, LI J. Study on the characteristics of the seismic response of a cable-stayed bridge crossing a fault rupture zone[C]//16th World Conference on Earthquake Engineering. Nanjing: [s.n.], 2014: 208, 175-180.
    杨怀宇,李建中. 断层地震动对隔震桥梁地震响应的影响[J]. 同济大学学报(自然科学版),2015,43(8): 1144-1152.

    YANG Huaiyu, LI Jianzhong. Influence of fault ground motion on seismic response of isolated bridge[J]. Journal of Tongji University (Natural Science Edition), 2015, 43(8): 1144-1152.
    惠迎新,王克海,吴刚,等. 跨断层桥梁地震响应分析及合理跨越角度研究[J]. 振动与冲击,2015,34(13): 6-11,17.

    HUI Yingxin, WANG Kehai, WU Gang, et al. Seismic response analysis and reasonable crossing angle of bridge across fault[J]. Vibration and Shock, 2015, 34(13): 6-11,17.
    惠迎新,毛明杰,刘海峰,等. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版),2018,48(6): 1725-1734.

    HUI Yingxin, MAO Mingjie, LIU Haifeng, et al. Seismic response influence of bridge structure across fault[J]. Journal of Jilin University (Engineering Science), 2018, 48(6): 1725-1734.
    WU S L , NOZU A , NAGASAKA Y. Accuracy of near-fault fling-step displacements estimated using the discrete wavenumber method[J]. Bulletin of the Seismological Society of America, 2020, 111(1): 267-53
    MAHMOOD M, MOHSEN G A. Seismic evaluation of horizontally curved bridges subjected to near-Field ground motions[J]. Latin American Journal of Solids and Structures, 2019, 16(2): 1-15.
    温硕. 基于横向碰撞效应的跨断层斜拉桥地震响应特性及减震措施研究[D]. 北京: 北京交通大学, 2019.
    中华人民共和国铁道部. 铁路工程抗震设计规范: GB 50111—2006(2009年版)[S]. 北京: 人民交通出版社, 2009.
    中华人民共和国交通运输部. 公路桥梁抗震设计规范细则: JTG/T B02-01—2008[S]. 北京: 人民交通出版社, 2008.
    惠迎新,王克海,李冲. 跨断层地表破裂带桥梁震害研究及抗震概念设计[J]. 公路交通科技,2014,31(10): 51-57. doi: 10.3969/j.issn.1002-0268.2014.10.009

    HUI Yingxin, WANG Kehai, LI Chong. Seismic damage research and seismic conceptual design of bridge across fault surface fracture zone[J]. Highway Transportation Technology, 2014, 31(10): 51-57. doi: 10.3969/j.issn.1002-0268.2014.10.009
    屠义伟. 某特大桥跨断层地震响应特征及抗震设计研究[J]. 公路工程,2018,43(4): 263-268.

    TU Yiwei. Study on seismic response characteristics and seismic design of a super large bridge across faults[J]. Highway Engineering, 2018, 43(4): 263-268.
    FADAEE M, EZZATYAZDI P, ANASTASOPOULOS I, et al. Mitigation of reverse faulting deformation using a soil bentonite wall:dimensional analysis,parametric study,design implications[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 248-261. doi: 10.1016/j.soildyn.2016.04.007
    ANASTASOPOULOS I, GEROLYMOS N, GAZETAS G, et al. Simplified approach for design of raft foundations against fault rupture. part I:free-field[J]. Earthquake Engineering and Engineering Vibration, 2008, 7: 147-163.
    ANASTASOPOULOS I, GEROLYMOS N G, GAZETAS M F B. Simplified approach for design of raft foundations against fault rupture. part II:soil-structure interaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7: 165-179.
  • 加载中
图(23)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  404
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-05-24
  • 网络出版日期:  2020-07-06
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回