• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢芯铝绞线的拉扭耦合力学性能

张龙 黄珏 钟永力 晏致涛

张龙, 黄珏, 钟永力, 晏致涛. 钢芯铝绞线的拉扭耦合力学性能[J]. 西南交通大学学报, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076
引用本文: 张龙, 黄珏, 钟永力, 晏致涛. 钢芯铝绞线的拉扭耦合力学性能[J]. 西南交通大学学报, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076
ZHANG Long, HUANG Jue, ZHONG Yongli, YAN Zhitao. Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076
Citation: ZHANG Long, HUANG Jue, ZHONG Yongli, YAN Zhitao. Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076

钢芯铝绞线的拉扭耦合力学性能

doi: 10.3969/j.issn.0258-2724.20200076
基金项目: 国家自然科学基金(51778097)
详细信息
    作者简介:

    张龙(1977—),男,高级工程师,硕士,研究方向为输电线路工程,E-mail:11984726@qq.com

    通讯作者:

    晏致涛(1978—),男,教授,博士,研究方向为输电线路工程,E-mail:yzt@cqust.edu.cn

  • 中图分类号: TB121

Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced

  • 摘要: 导线扭转参数属于导线基本力学性能之一,尤其是拉扭耦合效应会极大地影响覆冰输电线舞动分析的准确性. 为此,对典型7股钢芯铝绞线LGJ/JL/G1A-70/10进行了扭转试验,并结合有限元仿真软件ANSYS对相应构件进行建模与数值分析,与基于钢丝绳拉扭耦合理论的4种理论进行了对比. 数值分析结果与扭转试验结果吻合较好,且对比分析表明:拧绕系数的取值浮动较大,会导致不容忽视的误差;在正常运行应力状态下,导线拉伸会产生较大的扭转效应,导线的截面扭转也会产生轻微张力变化;导线的拉扭耦合和扭拉耦合系数不相等;基于钢丝绳的理论均未考虑子股导线的滑移变形及坐标更新,会在一定程度上高估轴向刚度以及拉扭耦合效应.

     

  • 图 1  扭转试验机及试件

    Figure 1.  Torsion testing machine and test specimens

    图 2  铝绞线试件扭矩转角曲线

    Figure 2.  Torque-rotation angle of aluminum conductor specimen

    图 3  LGJ/JL/G1A-70/10有限元模型

    Figure 3.  Finite element model of LGJ/JL/G1A-70/10

    图 4  ANSYS数值模拟与试验对比

    Figure 4.  Comparison between numerical simulation by ANSYS and test results

    图 5  扭矩-轴力关系

    Figure 5.  Relationship between torque and axial force

    图 6  扭转作用下导线von Mises应力

    Figure 6.  von Mises stress of conductor under torsion

    图 7  两端固定下轴力诱发扭矩

    Figure 7.  Axial force induced torque with two end fixed

    图 8  一端自由下轴力诱发扭矩

    Figure 8.  Axial force induced torque with one end free

    图 9  自由端扭矩诱发拉伸

    Figure 9.  Torsion induced tension with one end free

    表  1  钢芯铝绞线LGJ/JL/G1A-70/10的物理参数

    Table  1.   Physical parameters of wires

    参数
    根 × 直径/mm1 × 3.80
    6 × 3.80
    截面积/mm2钢/铝11.3/68.0
    总截面79.3
    铝、钢截面比6.02
    直径/mm11.4
    单位质量/(t•km−10.275
    计算拉断力/kN23.36
    综合弹性模量/MPa74300
    节距/mm13
    线膨胀系数/(℃−118.8 × 10−6
    下载: 导出CSV

    表  2  试件剪切模量

    Table  2.   Shear modulus of test specimens

    工况$\overline J $/mm4$\overline G $/GPa
    200-01 1125.893 4.378
    200-02 1125.893 4.745
    200-03 1125.893 3.882
    200-04 1125.893 3.761
    200-05 1125.893 4.684
    300-01 1125.893 4.659
    300-02 1125.893 4.565
    300-03 1125.893 4.268
    300-04 1125.893 4.058
    300-05 1125.893 3.734
    平均值 1125.893 4.405
    下载: 导出CSV

    表  3  纯扭下的轴力与扭矩

    Table  3.   Axis force and torque under pure torsion

    转角/
    rad
    S-轴
    力/N
    S-扭矩/
    (N•m)
    L-轴
    力/N
    L-扭矩/
    (N•m)
    平均扭矩/
    (N•m)
    0.02 0.099 0.628 0.099 0.630 0.607
    0.04 0.097 1.138 0.097 1.141 1.099
    0.06 0.096 1.648 0.095 1.654 1.593
    0.08 0.094 2.160 0.093 2.167 2.088
    0.10 0.092 2.672 0.091 2.682 2.584
    0.12 0.090 3.185 0.089 3.198 3.081
    0.14 0.088 3.699 0.087 3.715 3.579
    0.16 0.086 4.213 0.085 4.232 4.078
    0.18 0.084 4.728 0.083 4.751 4.578
    0.20 0.082 5.243 0.081 5.270 5.078
    下载: 导出CSV

    表  4  刚度方程对比

    Table  4.   Comparison of stiffness equation

    方法${F_\varepsilon }$/kN${M_\phi }$/
    (N•m2•rad−1
    ${F_\phi }$/
    (N•m)
    ${M_\varepsilon }$/
    (N•m)
    ANSYS
    仿真
    5 429.926.1382 101.982 255.77
    Hruska6 224.013.5172 792.472 792.47
    M-Z6 224.016.4362 792.472 792.47
    M-D6 224.016.3492 792.472 655.59
    K-C6 183.536.4962 792.472 583.80
    下载: 导出CSV

    表  5  各方法精度对比

    Table  5.   Accuracy comparison of methods

    方法剪切模量/GPa与试验误差/%
    ANSYS仿真4.5723.79
    郭应龙等[4]2.93433.39
    Hruska2.01254.33
    M-Z4.6064.56
    M-D4.5834.04
    K-C4.7367.51
    扭转试验4.405
    下载: 导出CSV
  • 晏致涛,黄静文,李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学,2012,29(8): 325-332. doi: 10.6052/j.issn.1000-4750.2010.08.0626

    YAN Zhitao, HUANG Jingwen, LI Zhengliang. Finite element model of split conductor based on 6-DOF node[J]. Engineering mechanics, 2012, 29(8): 325-332. doi: 10.6052/j.issn.1000-4750.2010.08.0626
    谢增,刘吉轩,刘超群,等. 架空输电线路分裂导线扭转刚度计算新方法[J]. 西安交通大学学报,2012,46(2): 100-105.

    XIE Zeng, LIU Jixuan, LIU Chaoqun, et al. A new method for calculating torsional stiffness of split conductor of overhead transmission line[J]. Journal of Xi’an Jiaotong University, 2012, 46(2): 100-105.
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 圆线同心绞架空导线: GB/T 1179—2017 [S]. 北京: 中国标准出版社, 2017.
    郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003: 131-140.
    SUSLOV B M. On the modulus of wire ropes[J]. Wire and Wire Products, 1936, 111: 176-182.
    HRUSKA F H. Calculations of stresses in wire rope[J]. Wire and Wire Products, 1951, 26: 766-767,799-801.
    LANTEIGNE J. Theoretical estimation of the response of helically armored cables to tension,torsion,and bending[J]. Journal of Applied Mechanics, 1985, 52(2): 423-432. doi: 10.1115/1.3169064
    MACHIDA S, DURELLI A J. Response of a strand to axial and torsional displacements[J]. Journal of Mechanical Engineering Science, 1973, 15(4): 241-251. doi: 10.1243/JMES_JOUR_1973_015_045_02
    MC CONNELL K G, ZEMKE W P. A model to predict the coupled axial torsion properties of ACSR electrical conductors[J]. Experimental Mechanics, 1982, 22(7): 237-244. doi: 10.1007/BF02326388
    KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515-529. doi: 10.1002/nme.1620140405
    COSTELLO G A, PHILLIPS J W. Effective modulus of twisted wire cables[J]. Journal of the Engineering Mechanics Division, 1976, 102(1): 171-181. doi: 10.1061/JMCEA3.0002092
    LOVE B A E H. A treatise on the mathematical theory of elasticity[M]. [S.l.]: Dover Publications, 1944.
    KUMAR K. S, Cochran J E. Closed-form analysis for elastic deformations of multilayered strands[J]. Journal of Applied Mechanics, 1987, 54(4): 898. doi: 10.1115/1.3173136
    XIANG L, WANG H Y, CHEN Y, et al. Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads[J]. International Journal of Solids and Structures, 2017, 129: 103-118. doi: 10.1016/j.ijsolstr.2017.09.008
    JOLICOEUR C, CARDOU A. A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads[J]. Journal of Energy Resources Technology, 1991, 113(4): 241-249. doi: 10.1115/1.2905907
    RAOOF M, KRAINCANIC I. Critical examination of various approaches used for analyzing helical cables[J]. The Journal of Strain Analysis for Engineering Design, 1994, 29(1): 43-55. doi: 10.1243/03093247V291043
    CHEN Y, MENG F, GONG X. Full contact analysis of wire rope strand subjected to varying loads based on semi-analytical method[J]. International Journal of Solids and Structures, 2017, 117: 51-66. doi: 10.1016/j.ijsolstr.2017.04.004
    张秋桦. 张拉导线应力及刚度的研究[D]. 北京: 华北电力大学, 2017.
    杨光甫. 钢芯铝绞线等效弯曲刚度研究[D]. 北京: 华北电力大学, 2015.
    卢银均,刘闯,孟遂民. 钢芯铝绞线弯曲状态受力分析[J]. 三峡大学学报(自然科学版),2018,40(3): 66-69.

    LU Yinjun, LIU Chuang, MENG Suimin. Stress analysis of steel cored aluminum strand in bending state[J]. Journal of Three Gorges University (Natural Science), 2018, 40(3): 66-69.
    UTTING W S, JONES N. The response of wire rope strands to axial tensile loads—part I:experimental results and theoretical predictions[J]. International Journal of Mechanical Sciences, 1987, 29(9): 605-619. doi: 10.1016/0020-7403(87)90033-6
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  265
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 修回日期:  2020-07-23
  • 网络出版日期:  2021-03-29
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回