• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

花岗质侵入岩地层隧址区的初始地应力场反演分析

周子寒 何川 蒙伟 汪波 寇昊 陈子全

周子寒, 何川, 蒙伟, 汪波, 寇昊, 陈子全. 花岗质侵入岩地层隧址区的初始地应力场反演分析[J]. 西南交通大学学报, 2022, 57(2): 322-330. doi: 10.3969/j.issn.0258-2724.20200074
引用本文: 周子寒, 何川, 蒙伟, 汪波, 寇昊, 陈子全. 花岗质侵入岩地层隧址区的初始地应力场反演分析[J]. 西南交通大学学报, 2022, 57(2): 322-330. doi: 10.3969/j.issn.0258-2724.20200074
ZHOU Zihan, HE Chuan, MENG Wei, WANG Bo, KOU Hao, CHEN Ziquan. Back Analysis of Initial Geostress Field in Tunnel Site of Granitic Intrusive Rock Stratum[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 322-330. doi: 10.3969/j.issn.0258-2724.20200074
Citation: ZHOU Zihan, HE Chuan, MENG Wei, WANG Bo, KOU Hao, CHEN Ziquan. Back Analysis of Initial Geostress Field in Tunnel Site of Granitic Intrusive Rock Stratum[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 322-330. doi: 10.3969/j.issn.0258-2724.20200074

花岗质侵入岩地层隧址区的初始地应力场反演分析

doi: 10.3969/j.issn.0258-2724.20200074
基金项目: 国家自然科学基金(52008351);四川省科技计划(2021YJ0539);四川省交通运输科技项目(2021-B-01);中央高校基本科研业务费专项资金(2682021CX013)
详细信息
    作者简介:

    周子寒(1994—),男,博士研究生,研究方向为隧道与地下工程,E-mail:zihanzhou18@163.com

    通讯作者:

    何川(1964—),男,教授,研究方向为隧道与地下工程,E-mail:chuanhe21@163.com

  • 中图分类号: U452

Back Analysis of Initial Geostress Field in Tunnel Site of Granitic Intrusive Rock Stratum

  • 摘要:

    火山隧道隧址区地层主要以花岗闪长岩侵入砂、泥岩分布,隧道轴线穿越花岗质侵入岩附近,岩性变化剧烈,地应力分布复杂. 利用地应力实测数据反分析侵入岩体区域初始地应力场分布规律以对设计、施工提供理论指导. 根据火山隧道地勘资料建立三维数值模型,基于现场水压致裂法实测原位地应力数据,采用多元线性回归法反演得到工程区域初始地应力场,重点讨论了花岗闪长岩侵入面附近地应力分布规律. 结果表明:花岗质侵入岩区域初始地应力场分布规律十分复杂,主应力量值及水平主应力方向均在侵入体内外侧发生剧烈变化(隧道轴线的主应力量值变化幅度为2.0~5.3 MPa,角度变化幅度为50.7°~178.8°);埋深和侵入体分布形态成为影响初始地应力场分布的重要因素,埋深越大或侵入体岩床横截面越小,初始地应力量值越大;同时侵入体前沿区域受到挤压构造作用显著,应力集中现象较为明显.

     

  • 图 1  火山隧道纵断面

    Figure 1.  Longitudinal section of Huoshan tunnel

    图 2  有限元计算模型

    Figure 2.  Finite element calculation model

    图 3  模型荷载示意

    Figure 3.  Model load indication

    图 4  隧道轴线初始地应力分布

    Figure 4.  Initial geostress distribution of the tunnel axis

    图 5  ZX-1~ZX-5初始地应力分布

    Figure 5.  Initial geostress distribution (ZX-1−ZX-5 )

    图 6  SX-1~SX-5初始地应力分布

    Figure 6.  Initial geostress distribution (SX-1−SX-5)

    图 7  最大水平主应力与X轴夹角示意

    注:图中长线表示最大水平主应力方向,短线表示最小水平主应力方向.

    Figure 7.  Diagram of the angles between maximum horizontal principal stress and X-axis

    表  1  SK-02钻孔水压致裂原位地应力测量结果

    Table  1.   Initial geostress measurement results of hydraulic fracturing method in SK-02 borehole

    测点编号测段深
    度/m
    ${\sigma _{\text{H}}}/{\rm MPa}$${\sigma _{\text{h}}}/{\rm MPa}$${\sigma _{\text{v}}}/{\rm MPa}$${\sigma _{\text{H}}}$方位
    1165.66.144.074.22
    2220.77.435.015.62
    3261.38.155.656.66N15°W
    4285.68.545.997.28N9°W
    下载: 导出CSV

    表  2  岩体物理力学性质参数

    Table  2.   Physico-mechanical parameters of rock masses

    岩体类型弹性模量/GPa泊松比密度/(kg•m−3
    花岗闪长岩130.282610
    砂岩3.50.322670
    泥岩1.50.402640
    砂岩、泥岩30.342660
    下载: 导出CSV

    表  3  实测原位地应力值与回归值对比

    Table  3.   Comparison of measured initial geostress values and regression values MPa

    测点编号${\sigma _X}$ ${\sigma _Y}$ ${\sigma _{\textit{Z}}}$ ${\tau _{XY}}$
    实测值回归值绝对
    误差
    相对
    误差/%
    实测值回归值绝对
    误差
    相对
    误差/%
    实测值回归值绝对
    误差
    相对
    误差/%
    实测值回归值绝对
    误差
    相对
    误差/%
    1−4.15−4.590.4410.6−6.06−7.191.1318.6−4.22−3.960.266.2−0.41−0.530.1229.3
    2−5.11−5.170.061.2−7.33−7.290.040.5−5.62−5.660.040.7−0.48−0.4800
    3−5.75−5.600.152.6−8.05−7.410.648.0−6.66−6.880.223.3−0.50−0.440.0612.0
    4−6.10−5.840.264.3−8.44−7.500.9411.1−7.28−7.600.324.4−0.51−0.410.1019.6
    注:${\sigma _X}、{\sigma _Y}、{\sigma _{\textit{Z}}}$分别为$X、Y、Z$方向正应力值;${\tau _{XY}}$为$XOY$平面剪应力.
    下载: 导出CSV

    表  4  最大水平主应力减小量值

    Table  4.   Maximum horizontal principal stress reduction magnitude

    轴线编号应力减小处埋深/m减小幅度/MPa
    ZX-1 372 4.5
    ZX-2 324 5.3
    ZX-3 296 6.3
    ZX-4 214 4.5
    ZX-5 128 5.7
    下载: 导出CSV

    表  5  最大水平主应力与X轴夹角

    Table  5.   Angles between maximum horizontal principal stress and X-axis

    测点编号侵入体内侧 ${\sigma _{\text{H}}}$与
    X 轴夹角/(°)
    侵入体外侧 ${\sigma _{\text{H}}}$与
    X 轴夹角/(°)
    188.1−86.7
    289.6−74.8
    389.0−74.6
    483.6−54.9
    553.5−60.8
    679.7−86.2
    777.9−54.9
    888.5−90.0
    989.9−87.4
    1089.4−89.4
    1186.7−56.1
    1215.2−35.5
    注:最大主应力与X轴夹角以顺时针为正,以逆时针为负.
    下载: 导出CSV
  • [1] 李华,李崇标,刘云鹏,等. 中国西南深切峡谷岸坡地应力场基本特征[J]. 岩土力学,2016,37(增刊1): 482-488.

    LI Hua, LI Chongbiao, LIU Yunpeng, et al. Geostress field characteristics of high steep canyon slope in southwest China[J]. Rock and Soil Mechanics, 2016, 37(S1): 482-488.
    [2] HUDSON J A, CORNET F H, CHRISTIANSSON R. ISRM suggested methods for rock stress estimation—part 1:strategy for rock stress estimation[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7): 991-998.
    [3] 蔡美峰. 地应力测量原理和技术[M]. 北京: 科学出版社, 2000
    [4] LI P, CAI M F, GUO Q F, et al. In situ stress state of the northwest region of the Jiaodong Peninsula,China from overcoring stress measurements in three gold mines[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4497-4507. doi: 10.1007/s00603-019-01827-3
    [5] 裴启涛,丁秀丽,卢波,等. 考虑地应力分布形式的坝址区初始应力场二次反演方法[J]. 岩土力学,2016,37(10): 2961-2970.

    PEI Qitao, DING Xiuli, LU Bo, et al. Two-stage back analysis method of initial geostress field in dam areas considering distribution characteristics of geostress[J]. Rock and Soil Mechanics, 2016, 37(10): 2961-2970.
    [6] 汪波,何川,吴德兴,等. 基于岩爆破坏形迹修正隧道区地应力及岩爆预测的研究[J]. 岩石力学与工程学报,2007,26(4): 811-817. doi: 10.3321/j.issn:1000-6915.2007.04.022

    WANG Bo, HE Chuan, WU Dexing, et al. Study on modification of geostress and forecast of rockburst based on destructive size of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 811-817. doi: 10.3321/j.issn:1000-6915.2007.04.022
    [7] 许传华,刁虎,任青文,等. 紫金山金铜矿初始地应力场反演分析[J]. 岩土力学,2009,30(2): 425-428,432. doi: 10.3969/j.issn.1000-7598.2009.02.023

    XU Chuanhua, DIAO Hu, REN Qingwen, et al. Back analysis of initial geostress field of Zijinshan gold and copper mine[J]. Rock and Soil Mechanics, 2009, 30(2): 425-428,432. doi: 10.3969/j.issn.1000-7598.2009.02.023
    [8] 王庆武,巨能攀,杜玲丽,等. 拉林铁路桑日至加查段三维地应力场反演分析[J]. 岩土力学,2018,39(4): 1450-1462.

    WANG Qingwu, JU Nengpan, DU Lingli, et al. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lhasa–Linzhi railway[J]. Rock and Soil Mechanics, 2018, 39(4): 1450-1462.
    [9] 徐卫中,胡光平,周曙光,等. 蟠龙抽水蓄能电站地下厂房区初始地应力场反演方法比较分析[J]. 水力发电,2019,45(8): 55-58,106. doi: 10.3969/j.issn.0559-9342.2019.08.014

    XU Weizhong, HU Guangping, ZHOU Shuguang, et al. Comparison on inversion methods of initial geostress field for underground powerhouse zone of Panlong Pumped-storage power station[J]. Water Power, 2019, 45(8): 55-58,106. doi: 10.3969/j.issn.0559-9342.2019.08.014
    [10] 李科,江星宏,吴梦军,等. 断裂扰动区隧道初始地应力场数值反演[J]. 土木工程学报,2017,50(增刊2): 255-259.

    LI Ke, JIANG Xinghong, WU Mengjun, et al. Numerical reversion of tunnel initial stress field in fault disturbed zone[J]. China Civil Engineering Journal, 2017, 50(S2): 255-259.
    [11] 赵辰,肖明,陈俊涛. 复杂地质条件下初始地应力场反演分析方法[J]. 华中科技大学学报(自然科学版),2017,45(8): 87-92.

    ZHAO Chen, XIAO Ming, CHEN Juntao. Inversion analysis method for in-situ stress field under complex geological conditions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(8): 87-92.
    [12] 张敏,黄健,巨能攀,等. 川藏铁路长大深埋隧道地应力场反演分析[J]. 地下空间与工程学报,2019,15(4): 1232-1238,1257.

    ZHANG Min, HUANG Jian, JU Nengpan, et al. Inverse analysis on in-situ stress field of super-long and deep buried tunnel in Chuan—Zang railway[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1232-1238,1257.
    [13] 崔效锋,谢富仁,张红艳. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报,2006,28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001

    CUI Xiaofeng, XIE Furen, ZHANG Hongyan. Recent tectonic stress field zoning in Sichuan—Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 2006, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001
    [14] 张奇华,钟作武,龚壁新. 施加边界位移产生纯剪应力及反分析应用[J]. 长江科学院院报,2000,17(2): 34-36. doi: 10.3969/j.issn.1001-5485.2000.02.009

    ZHANG Qihua, ZHONG Zuowu, GONG Bixin. Method of generating pure shear stress by adding boundary displacement and its application in back analysis for geostress field[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(2): 34-36. doi: 10.3969/j.issn.1001-5485.2000.02.009
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  180
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 修回日期:  2020-05-07
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回