Back Analysis of Initial Geostress Field in Tunnel Site of Granitic Intrusive Rock Stratum
-
摘要:
火山隧道隧址区地层主要以花岗闪长岩侵入砂、泥岩分布,隧道轴线穿越花岗质侵入岩附近,岩性变化剧烈,地应力分布复杂. 利用地应力实测数据反分析侵入岩体区域初始地应力场分布规律以对设计、施工提供理论指导. 根据火山隧道地勘资料建立三维数值模型,基于现场水压致裂法实测原位地应力数据,采用多元线性回归法反演得到工程区域初始地应力场,重点讨论了花岗闪长岩侵入面附近地应力分布规律. 结果表明:花岗质侵入岩区域初始地应力场分布规律十分复杂,主应力量值及水平主应力方向均在侵入体内外侧发生剧烈变化(隧道轴线的主应力量值变化幅度为2.0~5.3 MPa,角度变化幅度为50.7°~178.8°);埋深和侵入体分布形态成为影响初始地应力场分布的重要因素,埋深越大或侵入体岩床横截面越小,初始地应力量值越大;同时侵入体前沿区域受到挤压构造作用显著,应力集中现象较为明显.
Abstract:The stratum of the Huoshan tunnel mainly distributes sandstone and mudstone intrusive by granodiorite. The tunnel axis passes through the granitic intrusive rock area where the lithology changes drastically, and the distribution of initial geostress is complicated. Back analysis the characteristics of the initial geostress field in the intrusive rock mass area based on the measured geostress data can further guide the design and construction. A three-dimensional numerical model is established depending on the geological survey data of the Huoshan tunnel. The initial geostress data of borehole is measured by the hydraulic fracturing method, multivariate linear regression method is used to obtain the initial geostress field in engineering area. The distribution of initial geostress near the granodiorite intrusion surface is discussed. The results show that the distribution of the initial geostress field in granitic intrusive rock is very complicated. Both the magnitude of the principal stresses and the direction of the horizontal principal stresses inside and outside the intrusive bodies have changed dramatically (the change range of the principal stress magnitude is about 2.0−5.3 MPa, and that of the principal stress angle is about 50.7°−178.8°). Burial depth and distribution of intrusive body have become important factors affecting the distribution of initial geostress field, and the larger the burial depth or the smaller the cross section of the intrusive rock body, the larger the initial geostress value; At the same time, the front area of the intrusive body was significantly impacted by compressive tectonics, and stress concentration is more obvious.
-
Key words:
- granitic intrusive rock /
- intrusive body /
- tunnel /
- initial geostress /
- back analysis
-
表 1 SK-02钻孔水压致裂原位地应力测量结果
Table 1. Initial geostress measurement results of hydraulic fracturing method in SK-02 borehole
测点编号 测段深
度/m${\sigma _{\text{H}}}/{\rm MPa}$ ${\sigma _{\text{h}}}/{\rm MPa}$ ${\sigma _{\text{v}}}/{\rm MPa}$ ${\sigma _{\text{H}}}$方位 1 165.6 6.14 4.07 4.22 2 220.7 7.43 5.01 5.62 3 261.3 8.15 5.65 6.66 N15°W 4 285.6 8.54 5.99 7.28 N9°W 表 2 岩体物理力学性质参数
Table 2. Physico-mechanical parameters of rock masses
岩体类型 弹性模量/GPa 泊松比 密度/(kg•m−3) 花岗闪长岩 13 0.28 2610 砂岩 3.5 0.32 2670 泥岩 1.5 0.40 2640 砂岩、泥岩 3 0.34 2660 表 3 实测原位地应力值与回归值对比
Table 3. Comparison of measured initial geostress values and regression values
MPa 测点编号 ${\sigma _X}$ ${\sigma _Y}$ ${\sigma _{\textit{Z}}}$ ${\tau _{XY}}$ 实测值 回归值 绝对
误差相对
误差/%实测值 回归值 绝对
误差相对
误差/%实测值 回归值 绝对
误差相对
误差/%实测值 回归值 绝对
误差相对
误差/%1 −4.15 −4.59 0.44 10.6 −6.06 −7.19 1.13 18.6 −4.22 −3.96 0.26 6.2 −0.41 −0.53 0.12 29.3 2 −5.11 −5.17 0.06 1.2 −7.33 −7.29 0.04 0.5 −5.62 −5.66 0.04 0.7 −0.48 −0.48 0 0 3 −5.75 −5.60 0.15 2.6 −8.05 −7.41 0.64 8.0 −6.66 −6.88 0.22 3.3 −0.50 −0.44 0.06 12.0 4 −6.10 −5.84 0.26 4.3 −8.44 −7.50 0.94 11.1 −7.28 −7.60 0.32 4.4 −0.51 −0.41 0.10 19.6 注:${\sigma _X}、{\sigma _Y}、{\sigma _{\textit{Z}}}$分别为$X、Y、Z$方向正应力值;${\tau _{XY}}$为$XOY$平面剪应力. 表 4 最大水平主应力减小量值
Table 4. Maximum horizontal principal stress reduction magnitude
轴线编号 应力减小处埋深/m 减小幅度/MPa ZX-1 372 4.5 ZX-2 324 5.3 ZX-3 296 6.3 ZX-4 214 4.5 ZX-5 128 5.7 表 5 最大水平主应力与X轴夹角
Table 5. Angles between maximum horizontal principal stress and X-axis
测点编号 侵入体内侧 ${\sigma _{\text{H}}}$与
X 轴夹角/(°)侵入体外侧 ${\sigma _{\text{H}}}$与
X 轴夹角/(°)1 88.1 −86.7 2 89.6 −74.8 3 89.0 −74.6 4 83.6 −54.9 5 53.5 −60.8 6 79.7 −86.2 7 77.9 −54.9 8 88.5 −90.0 9 89.9 −87.4 10 89.4 −89.4 11 86.7 −56.1 12 15.2 −35.5 注:最大主应力与X轴夹角以顺时针为正,以逆时针为负. -
[1] 李华,李崇标,刘云鹏,等. 中国西南深切峡谷岸坡地应力场基本特征[J]. 岩土力学,2016,37(增刊1): 482-488.LI Hua, LI Chongbiao, LIU Yunpeng, et al. Geostress field characteristics of high steep canyon slope in southwest China[J]. Rock and Soil Mechanics, 2016, 37(S1): 482-488. [2] HUDSON J A, CORNET F H, CHRISTIANSSON R. ISRM suggested methods for rock stress estimation—part 1:strategy for rock stress estimation[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7): 991-998. [3] 蔡美峰. 地应力测量原理和技术[M]. 北京: 科学出版社, 2000 [4] LI P, CAI M F, GUO Q F, et al. In situ stress state of the northwest region of the Jiaodong Peninsula,China from overcoring stress measurements in three gold mines[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4497-4507. doi: 10.1007/s00603-019-01827-3 [5] 裴启涛,丁秀丽,卢波,等. 考虑地应力分布形式的坝址区初始应力场二次反演方法[J]. 岩土力学,2016,37(10): 2961-2970.PEI Qitao, DING Xiuli, LU Bo, et al. Two-stage back analysis method of initial geostress field in dam areas considering distribution characteristics of geostress[J]. Rock and Soil Mechanics, 2016, 37(10): 2961-2970. [6] 汪波,何川,吴德兴,等. 基于岩爆破坏形迹修正隧道区地应力及岩爆预测的研究[J]. 岩石力学与工程学报,2007,26(4): 811-817. doi: 10.3321/j.issn:1000-6915.2007.04.022WANG Bo, HE Chuan, WU Dexing, et al. Study on modification of geostress and forecast of rockburst based on destructive size of rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 811-817. doi: 10.3321/j.issn:1000-6915.2007.04.022 [7] 许传华,刁虎,任青文,等. 紫金山金铜矿初始地应力场反演分析[J]. 岩土力学,2009,30(2): 425-428,432. doi: 10.3969/j.issn.1000-7598.2009.02.023XU Chuanhua, DIAO Hu, REN Qingwen, et al. Back analysis of initial geostress field of Zijinshan gold and copper mine[J]. Rock and Soil Mechanics, 2009, 30(2): 425-428,432. doi: 10.3969/j.issn.1000-7598.2009.02.023 [8] 王庆武,巨能攀,杜玲丽,等. 拉林铁路桑日至加查段三维地应力场反演分析[J]. 岩土力学,2018,39(4): 1450-1462.WANG Qingwu, JU Nengpan, DU Lingli, et al. Three dimensional inverse analysis of geostress field in the Sangri–Jiacha section of Lhasa–Linzhi railway[J]. Rock and Soil Mechanics, 2018, 39(4): 1450-1462. [9] 徐卫中,胡光平,周曙光,等. 蟠龙抽水蓄能电站地下厂房区初始地应力场反演方法比较分析[J]. 水力发电,2019,45(8): 55-58,106. doi: 10.3969/j.issn.0559-9342.2019.08.014XU Weizhong, HU Guangping, ZHOU Shuguang, et al. Comparison on inversion methods of initial geostress field for underground powerhouse zone of Panlong Pumped-storage power station[J]. Water Power, 2019, 45(8): 55-58,106. doi: 10.3969/j.issn.0559-9342.2019.08.014 [10] 李科,江星宏,吴梦军,等. 断裂扰动区隧道初始地应力场数值反演[J]. 土木工程学报,2017,50(增刊2): 255-259.LI Ke, JIANG Xinghong, WU Mengjun, et al. Numerical reversion of tunnel initial stress field in fault disturbed zone[J]. China Civil Engineering Journal, 2017, 50(S2): 255-259. [11] 赵辰,肖明,陈俊涛. 复杂地质条件下初始地应力场反演分析方法[J]. 华中科技大学学报(自然科学版),2017,45(8): 87-92.ZHAO Chen, XIAO Ming, CHEN Juntao. Inversion analysis method for in-situ stress field under complex geological conditions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(8): 87-92. [12] 张敏,黄健,巨能攀,等. 川藏铁路长大深埋隧道地应力场反演分析[J]. 地下空间与工程学报,2019,15(4): 1232-1238,1257.ZHANG Min, HUANG Jian, JU Nengpan, et al. Inverse analysis on in-situ stress field of super-long and deep buried tunnel in Chuan—Zang railway[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1232-1238,1257. [13] 崔效锋,谢富仁,张红艳. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报,2006,28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001CUI Xiaofeng, XIE Furen, ZHANG Hongyan. Recent tectonic stress field zoning in Sichuan—Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 2006, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001 [14] 张奇华,钟作武,龚壁新. 施加边界位移产生纯剪应力及反分析应用[J]. 长江科学院院报,2000,17(2): 34-36. doi: 10.3969/j.issn.1001-5485.2000.02.009ZHANG Qihua, ZHONG Zuowu, GONG Bixin. Method of generating pure shear stress by adding boundary displacement and its application in back analysis for geostress field[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(2): 34-36. doi: 10.3969/j.issn.1001-5485.2000.02.009