• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

八角楼乡火后泥石流空间发育特征

杨瀛 胡卸文 王严 金涛 曹希超 韩玫

杨瀛, 胡卸文, 王严, 金涛, 曹希超, 韩玫. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报, 2021, 56(4): 818-827. doi: 10.3969/j.issn.0258-2724.20200015
引用本文: 杨瀛, 胡卸文, 王严, 金涛, 曹希超, 韩玫. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报, 2021, 56(4): 818-827. doi: 10.3969/j.issn.0258-2724.20200015
YANG Ying, HU Xiewen, WANG Yan, JIN Tao, CAO Xichao, HAN Mei. Spatial Development Characteristics of Post-Fire Debris Flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818-827. doi: 10.3969/j.issn.0258-2724.20200015
Citation: YANG Ying, HU Xiewen, WANG Yan, JIN Tao, CAO Xichao, HAN Mei. Spatial Development Characteristics of Post-Fire Debris Flow in Bajiaolou Town[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818-827. doi: 10.3969/j.issn.0258-2724.20200015

八角楼乡火后泥石流空间发育特征

doi: 10.3969/j.issn.0258-2724.20200015
基金项目: 国家自然科学基金(41731285,41672283,41907225)
详细信息
    作者简介:

    杨瀛(1992—),男,博士研究生,研究方向为工程地质,E-mail:yangying@my.swjtu.edu.cn

    通讯作者:

    胡卸文(1963—),男,教授,博士,博士生导师,研究方向为工程地质、环境地质等,E-mail:huxiewen@163.com

Spatial Development Characteristics of Post-Fire Debris Flow in Bajiaolou Town

  • 摘要: 作为一种与林火密切相关的特殊泥石流,火后泥石流的形成具有明显的空间差异性,对其空间发育特征及影响因素的分析有利于此类泥石流的防灾减灾. 运用现场调查、室内外试验和遥感解译等手段,对雅江县八角楼乡火烧迹地15条沟道的火后泥石流发育特征及地形、林火、植被特征、降雨条件进行了多元分析. 结果表明:火烈度越强,土壤的物理力学性质劣化越严重,斥水性越强,渗透性越低,泥石流越易形成;流域过火面积越大,植被覆盖率越低,泥石流暴发频率越高;相对于大流域,小而陡的流域反而更易暴发火后泥石流. 此外,研究区内暴发的5次火后泥石流中有4次泥石流其激发雨强重复周期均小于5 a,且随着时间的增长激发雨强也逐渐升高.

     

  • 图 1  研究区火烧迹地及火后泥石流发育工程地质平面

    Figure 1.  Burnt area and geological development plane of post-fire debris flow

    图 2  各流域火烈度分布

    Figure 2.  Fire intensity distribution of basins

    图 3  各流域火烧区面积占比分布

    Figure 3.  Proportion of burned area in each basin

    图 4  各火烈度区土壤内聚力和内摩擦角

    Figure 4.  Cohesion and internal friction of soil in areas with different fire intensities

    图 5  各火烈度区坡表不同深度处土壤渗透性

    Figure 5.  Soil permeability at different depths in areas with different fire intensities

    图 6  火烧区面积占比与泥石流暴发频次的关系

    Figure 6.  Relationship between proportion of burned area and frequency of post-fire debris flow

    图 7  各流域6月植被覆盖率分布

    Figure 7.  Distribution of vegetation coverage in each basin in June

    图 8  火烧对流域植被覆盖率的影响

    Figure 8.  Forest fire effects on vegetation coverage in study area

    图 9  植被覆盖率与火后泥石流暴发频次的关系

    Figure 9.  Relationship between vegetation coverage rate and frequency of post-fire debris flow

    图 10  地形因子及火后泥石流爆发频次与流域面积的关系

    Figure 10.  Relationship between terrain factors,post-fire debris flow frequency and basin area

    图 11  2018年各次火后泥石流降雨过程

    Figure 11.  Rainfall process of post-fire debris flows in 2018

    表  1  2018年火烧迹地泥石流暴发情况统计

    Table  1.   Statistics of post-fire debris flow occurred in burnt area in 2018

    流域是否发生泥石流和洪水是否过火暴发频次/次易发性
    6月13日6月24日6月30日7月5日7月12日
    D1 × × × 2L
    D2 × 4H
    D35H
    D4 × × 3L
    D55H
    D6 × × 3L
    D75H
    D8 × × 3L
    D95H
    D105H
    F1 × × × × × 0N
    F2 × × × × × 0N
    F3 × × × × × 0N
    F4 × × × × × 0N
    F5 × × × × × 0N
    注:“√”表示发生了泥石流,“×”表示只发生了洪水;“L”表示易发,“H”表示高易发,“N”表示不易发.
    下载: 导出CSV

    表  2  火烧迹地坡表土壤物理性质试验结果

    Table  2.   Tested physical properties of soil on slope in study area

    火烈度密度/(g•cm−3含水率/%比重干密度/(g•cm−3孔隙度/%
    未火烧(对照组)1.51 ± 0.08 (a)4.77 ± 0.30 (a)2.62 ± 0.01 (a,b)1.44 ± 0.08 (a)45.14 ± 3.08 (b)
    轻度1.30 ± 0.03 (a,b)3.89 ± 0.44 (a,b)2.62 ± 0.01 (a,b)1.25 ± 0.03 (a,b)52.28 ± 1.28 (a,b)
    中度1.20 ± 0.08 (b)2.69 ± 0.34 (b)2.63 ± 0.01(a)1.17 ± 0.08 (b)55.66 ± 3.17 (a)
    重度1.14 ± 0.04 (b)1.14 ± 0.26 (c)2.59 ± 0.01 (b)1.12 ± 0.04 (b)56.66 ± 1.40 (a)
    注:表中数据为均值 ± 标准误差;a、b、c反映单因素方差分析结果,同列数据不同字母表示均值差异性显著(P值小于0.05).
    下载: 导出CSV

    表  3  各火烈度区坡表不同深度处不同斥水土壤样本含量占比

    Table  3.   Proportion of hydrophobic soil samples at different depths in areas with different fire intensities

    深度/cm火烈度样本含量占比/%斥水性土壤
    占比合计/%
    NLMH
    0 W 72.48 23.91 2.45 1.16 27.52
    Q 42.22 26.93 7.81 23.04 57.78
    Z 29.79 28.61 14.62 26.98 70.21
    Y 25.42 28.59 12.05 33.94 74.58
    1 W 93.04 4.16 1.53 1.27 6.96
    Q 93.53 2.57 0.86 3.04 6.47
    Z 51.07 32.01 7.64 9.28 48.93
    Y 52.24 33.81 5.97 7.98 47.76
    2 W 97.05 1.23 0.44 1.28 2.95
    Q 97.12 1.54 0.53 0.81 2.88
    Z 88.21 6.53 2.64 2.62 11.79
    Y 87.53 7.62 1.56 3.29 12.47
    3 W 97.13 0.82 1.21 0.84 2.87
    Q 96.43 1.68 0.87 1.02 3.57
    Z 96.49 1.07 0.99 1.45 3.51
    Y 94.35 1.86 1.98 1.81 5.65
    注:“W”为未火烧,“Q”为轻度火烧,“Z”为中度火烧,“Y”为重度火烧;“N”为亲水,“L”为轻度斥水,“M”为中度斥水,“H”为严重斥水.
    下载: 导出CSV

    表  4  各流域基本地形参数

    Table  4.   Basic topographic parameters of each basin

    流域编号面积/km2流域高
    差/m
    主沟长/km主沟纵比降/‰沟道密度/
    (km•km−2
    D13.1914303.88336.041.87
    D20.858252.00370.613.58
    D30.256501.28501.708.80
    D42.2014453.35395.282.67
    D50.206240.95717.639.93
    D60.317611.17722.326.42
    D70.648701.48555.214.95
    D82.8210772.72335.143.13
    D90.315920.97590.586.29
    D100.244920.83549.638.21
    F14.1314495.06286.821.80
    F26.9815016.45206.522.54
    F35.1514434.34289.461.48
    F40.446971.13581.346.18
    F51.3810622.81348.703.01
    下载: 导出CSV
  • NYMAN P, SMITH H G, SHERWIN C B, et al. Predicting sediment delivery from debris flows after wildfire[J]. Geomorphology, 2015, 250: 173-186. doi: 10.1016/j.geomorph.2015.08.023
    NYMAN P, SHERIDAN G J, SMITH H G, et al. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia[J]. Geomorphology, 2011, 125(3): 383-401. doi: 10.1016/j.geomorph.2010.10.016
    GARTNER J E, CANNON S H, BIGIO E R, et al. Compilation of data relating to the erosive response of 606 recently-burned basins in the Western U. S.[R]. Washington D. C.: U. S. Geological Survey, 2005.
    GABET E J, BOOKTER A. A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana,USA[J]. Geomorphology, 2008, 96(3/4): 298-309.
    CANNON S H, GARTNER J E, JAKOB M, et al. Wildfire-related debris flow from a hazards perspective[M]. Berlin: Springer, 2005: 363-385.
    HYDE K D, WILCOX A C, JENCSO K, et al. Effects of vegetation disturbance by fire on channel initiation thresholds[J]. Geomorphology, 2014, 214: 84-96. doi: 10.1016/j.geomorph.2014.03.013
    KEAN J W, STALEY D M, CANNON S H. In situ measurements of post-fire debris flows in southern California:comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(4): F4019.1-F4019.21.
    胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6): 1562-1573.

    HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology, 2018, 26(6): 1562-1573.
    胡卸文,韩玫,梁敬轩,等. 汶川地震灾区泥石流若干关键问题[J]. 西南交通大学学报,2016,51(2): 331-340. doi: 10.3969/j.issn.0258-2724.2016.02.012

    HU Xiewen, HAN Mei, LIANG Jingxuan, et al. Some key problems on debris flow in Wenchuan earthquake area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 331-340. doi: 10.3969/j.issn.0258-2724.2016.02.012
    邸雪颖,陶玉柱. 火后泥石流研究进展[J]. 应用生态学报,2013,24(8): 2383-2392.

    DI Xueying, TAO Yuzhu. Research progress in post-fire debris flow[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2383-2392.
    陈子龙. 仁额拥沟火后泥石流发育特征及成因机制研究[D]. 成都: 成都理工大学, 2016.
    任云,胡卸文,王严,等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6): 150-156.

    REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong county of Sichuan[J]. Hydrogeology and Engineering Geology, 2018, 45(6): 150-156.
    KEY C H, BENSON N C. Landscape assessment (LA) sampling and analysis methods[M]. Washington D. C.: USDA Forest Service, 2006: 25-26.
    王晓莉,王文娟,常禹,等. 基于NBR指数分析大兴安岭呼中森林过火区的林火烈度[J]. 应用生态学报,2013,24(4): 967-974.

    WANG Xiaoli, WANG Wenjuan, CHANG Yu, et al. Fire severity of burnt area in Huzhong forest region of Great Xing’an Mountains,Northeast China based on normalized burn ration analysis[J]. Journal of Applied Ecology, 2013, 24(4): 967-974.
    中华人民共和国水利部. 土工试验方法标准: GB/T 50123—1999[S]. 北京: 中国计划出版社, 1999.
    BADÍA-VILLAS D, GONZÁLEZ-PÉREZ J A, AZNAR J M, et al. Changes in water repellency,aggregation and organic matter of a mollic horizon burned in laboratory:Soil depth affected by fire[J]. Geoderma, 2014, 213: 400-407. doi: 10.1016/j.geoderma.2013.08.038
    ROBICHAUD P R, WAGENBRENNER J W, PIERSON F B, et al. Infiltration and interrill erosion rates after a wildfire in western Montana,USA[J]. Catena, 2016, 142: 77-88. doi: 10.1016/j.catena.2016.01.027
    张颖,牛健植,谢宝元,等. 森林植被对坡面土壤水蚀作用的动力学机理[J]. 生态学报,2008,28(10): 5084-5094. doi: 10.3321/j.issn:1000-0933.2008.10.056

    ZHANG Ying, NIU Jianzhi, XIE Baoyuan, et al. Dynamics mechanism of the effect of forest vegetation on hill-slop water erosion[J]. Journal of Applied Ecology, 2008, 28(10): 5084-5094. doi: 10.3321/j.issn:1000-0933.2008.10.056
    陈晋,陈云浩,何春阳,等. 基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J]. 遥感学报,2001,5(6): 416-422. doi: 10.11834/jrs.20010603

    CHEN Jin, CHEN Yunhao, HE Chunyang, et al. Sub-pixel model for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing, 2001, 5(6): 416-422. doi: 10.11834/jrs.20010603
    NGUYEN P, SHEARER E J, TRAN H, et al. The CHRS data portal,an easily accessible public repository for Persiann global satellite precipitation data[J]. Nature Scientific Data, 2019, 6: 180296.1-180296.10. doi: 10.1038/sdata.2018.296
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  197
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 修回日期:  2020-07-04
  • 网络出版日期:  2020-07-09
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回