• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

风屏障的突风效应对桥上列车走行性的影响

徐昕宇 李永乐 陈星宇 郑晓龙 廖海黎

徐昕宇, 李永乐, 陈星宇, 郑晓龙, 廖海黎. 风屏障的突风效应对桥上列车走行性的影响[J]. 西南交通大学学报, 2021, 56(5): 1050-1055, 1093. doi: 10.3969/j.issn.0258-2724.20191201
引用本文: 徐昕宇, 李永乐, 陈星宇, 郑晓龙, 廖海黎. 风屏障的突风效应对桥上列车走行性的影响[J]. 西南交通大学学报, 2021, 56(5): 1050-1055, 1093. doi: 10.3969/j.issn.0258-2724.20191201
XU Xinyu, LI Yongle, CHEN Xingyu, ZHENG Xiaolong, LIAO Haili. Impact of Sudden Change of Wind Loads on Running Performance of Vehicle on Bridge with Wind Barriers[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1050-1055, 1093. doi: 10.3969/j.issn.0258-2724.20191201
Citation: XU Xinyu, LI Yongle, CHEN Xingyu, ZHENG Xiaolong, LIAO Haili. Impact of Sudden Change of Wind Loads on Running Performance of Vehicle on Bridge with Wind Barriers[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1050-1055, 1093. doi: 10.3969/j.issn.0258-2724.20191201

风屏障的突风效应对桥上列车走行性的影响

doi: 10.3969/j.issn.0258-2724.20191201
基金项目: 国家重点研发计划(2017YFB1201204)
详细信息
    作者简介:

    徐昕宇(1990—),男,高级工程师,博士,研究方向为桥梁风工程及车桥耦合振动,E-mail:lsxxy90@126.com

  • 中图分类号: U448.13

Impact of Sudden Change of Wind Loads on Running Performance of Vehicle on Bridge with Wind Barriers

  • 摘要: 为研究列车进出风屏障段时所受突风效应的影响,以一高速铁路多跨简支梁桥为研究对象,通过风洞试验测试了风屏障在100.0%、43.5%和0透风率情况下车-桥系统的气动特性;基于哑元耦合法,建立了风-车-桥系统分析模型,开展了两种风屏障布置形式(通长和非通长)时风屏障透风率和列车车速对列车动力响应的影响分析. 研究结果表明:设置风屏障时桥上列车的气动特性存在较大差异,尤其列车气动阻力系数在风屏障透风率0比透风率100.0%时减少87%;当风屏障通长布置时,风屏障防风效果显著,随着透风率的减小,列车动力响应大幅减小,其中轮重减载率减小达53%;当风屏障非通长布置情况时,列车在进入和离开风屏障区段时,突风效应对列车的横向加速度和竖向加速度均影响显著,透风率越低,加速度响应变化越剧烈,但对于轮轴横向力和轮重减载率的影响有限;随着车速的提高,突风效应造成的加速度响应总体上增大,呈明显的非线性变化.

     

  • 图 1  桥梁有限元模型

    Figure 1.  Finite element model of bridge

    图 2  基于哑元耦合法的风-车-桥系统分析模型

    Figure 2.  Wind-vehicle-bridge system model based on DBC (dummy body coupling) method

    图 3  桥上风屏障分布

    Figure 3.  Distributions of wind barriers on the bridge

    图 4  离散风场模拟

    Figure 4.  Wind velocity fields at discrete points

    图 5  通长布置风屏障对车辆动力响应影响

    Figure 5.  Influences of continuous wind barriers on dynamic responses of vehicle

    图 6  非通长布置风屏障对车辆动力响应影响

    Figure 6.  Influences of non-continuous wind barriers on dynamic responses of vehicle

    表  1  列车气动力系数

    Table  1.   Aerodynamic coefficients of vehicle

    透风率/%阻力系数 CD升力系数 CL扭矩系数 CM
    100.01.7100.739−0.098
    43.51.0820.554−0.089
    00.230−0.0240.017
    下载: 导出CSV

    表  2  通长布置风屏障不同透风率下列车的动力响应

    Table  2.   Dynamic responses of vehicle at different porosities of continuous wind barriers

    风屏障透风率/% 横向加速度/
    (m•s−2
    竖向加速度/
    (m•s−2
    轮轴横向力/kN 轮重减载率 脱轨系数 横向 Sperling
    指标
    竖向 Sperling
    指标
    100.0 0.939 7 0.881 2 23.46 0.585 8 0.203 0 2.300 5 1.957 3
    43.5 0.710 8 0.817 4 17.42 0.434 4 0.140 4 2.199 9 1.887 2
    0 0.673 6 0.742 4 13.29 0.275 5 0.104 5 2.150 7 1.871 0
    下载: 导出CSV

    表  3  非通长布置风屏障不同透风率下列车的动力响应

    Table  3.   Dynamic responses of vehicle at different porosities of non-continuous wind barriers

    中间段风屏障透风率/% 横向加速度/
    (m•s−2
    竖向加速度/
    (m•s−2
    轮轴横向力/kN 轮重减载率 脱轨系数 横向Sperling
    指标
    竖向Sperling
    指标
    100.0 0.9397 0.8812 23.46 0.585 8 0.203 0 2.300 5 1.957 3
    43.5 0.9135 0.8832 23.02 0.585 8 0.198 8 2.285 1 1.933 7
    0 1.0500 0.8511 22.60 0.585 8 0.194 5 2.292 5 1.973 6
    下载: 导出CSV

    表  4  不同车速下列车的动力响应

    Table  4.   Dynamic responses of vehicle at different operation speeds

    透风率/% 车速/
    (km•h−1
    横向加速度/
    (m•s−2
    竖向加速度/
    (m•s−2
    轮轴横
    向力/kN
    轮重减载率 脱轨系数 横向 Sperling
    指标
    竖向 Sperling
    指标
    43.5 150 0.830 8 0.790 0 20.30 0.501 1 0.161 3 2.081 9 1.928 7
    175 0.934 6 0.807 7 21.68 0.525 0 0.168 7 2.172 3 1.876 6
    200 0.913 5 0.883 2 23.02 0.585 8 0.198 8 2.285 1 1.933 7
    225 0.952 0 0.740 6 22.13 0.586 6 0.182 0 2.372 3 2.022 6
    250 1.331 2 0.927 4 30.72 0.683 0 0.244 1 2.558 4 2.111 7
    0 150 1.229 8 0.823 7 23.43 0.554 9 0.188 9 2.077 3 1.963 9
    175 1.543 0 0.984 8 20.98 0.532 6 0.172 6 2.206 7 1.933 0
    200 1.050 0 0.851 1 22.60 0.585 8 0.194 5 2.292 5 1.973 6
    225 1.127 2 0.894 7 26.04 0.591 4 0.198 9 2.387 3 2.016 9
    250 1.435 9 1.036 2 30.48 0.683 0 0.247 0 2.592 4 2.210 0
    下载: 导出CSV

    表  5  列车气动力系数变化量对比

    Table  5.   Comparison on aerodynamic coefficient variations of vehicle

    透风率/%δDδL
    43.50.6280.185
    01.4800.763
    下载: 导出CSV
  • CAI C S, HU J X, CHEN S R, et al. A coupled wind-vehicle-bridge system and its applications:a review[J]. Wind and Structures, 2015, 20(2): 117-142. doi: 10.12989/was.2015.20.2.117
    JOHNSON T. Strong wind effects on railway operations—16th October 1987[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60: 251-266. doi: 10.1016/0167-6105(96)00038-4
    FUJII T, MAEDA T, ISHIDA H, et al. Wind-induced accidents of train/vehicles and their measures in Japan[J]. Quarterly Report of RTRI, 1999, 40(1): 50-55. doi: 10.2219/rtriqr.40.50
    李永乐,向活跃,强士中. 风-列车-桥系统耦合振动研究综述[J]. 中国公路学报,2018,31(7): 24-37. doi: 10.3969/j.issn.1001-7372.2018.07.002

    LI Yongle, XIANG Huoyue, QIANG Shizhong. Review on coupling vibration of wind-vehicle-bridge systems[J]. China Journal of Highway and Transport, 2018, 31(7): 24-37. doi: 10.3969/j.issn.1001-7372.2018.07.002
    CHU C R, CHANG C Y, HUANG C J, et al. Windbreak protection for road vehicles against crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116: 61-69. doi: 10.1016/j.jweia.2013.02.001
    OGUETA-GUTIÉRREZ M, FRANCHINI S, ALONSO G. Effects of bird protection barriers on the aerodynamic and aeroelastic behaviour of high speed train bridges[J]. Engineering Structures, 2014, 81: 22-34. doi: 10.1016/j.engstruct.2014.09.035
    郭薇薇,夏禾,张田. 桥梁风屏障的气动效应及其对高速列车运行安全的影响分析[J]. 工程力学,2015,32(8): 112-119. doi: 10.6052/j.issn.1000-4750.2014.11.0062

    GUO Weiwei, XIA He, ZHANG Tian. Analysis on aerodynamic effects of bridge wind barrier and its influence on running safety of a high-speed train[J]. Engineering Mechanism, 2015, 32(8): 112-119. doi: 10.6052/j.issn.1000-4750.2014.11.0062
    向活跃,李永乐,苏洋,等. 铁路风屏障防风效果代理模型优化[J]. 西南交通大学学报,2016,51(6): 1098-1104. doi: 10.3969/j.issn.0258-2724.2016.06.008

    XIANG Huoyue, LI Yongle, SU Yang, et al. Surrogate model optimizations for protective effects of railway wind barriers[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1098-1104. doi: 10.3969/j.issn.0258-2724.2016.06.008
    XIANG H Y, LI Y L, CHEN S R, et al. Wind loads of moving vehicle on bridge with solid wind barrier[J]. Engineering Structures, 2018, 156: 188-196. doi: 10.1016/j.engstruct.2017.11.009
    HE X H, ZHOU L, CHEN Z W, et al. Effect of wind barriers on the flow field and aerodynamic forces of a train–bridge system[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2019, 233(3): 283-297. doi: 10.1177/0954409718793220
    LI Y L, XU X Y, ZHOU Y, et al. An interactive method for the analysis of the simulation of vehicle–bridge coupling vibration using ANSYS and SIMPACK[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2018, 232(3): 663-679. doi: 10.1177/0954409716684277
    徐昕宇. 复杂山区铁路风-车-桥系统耦合振动研究[D]. 成都: 西南交通大学, 2017.
    DIETZ S, HIPPMANN G, SCHUPP G. Interaction of vehicles and flexible tracks by co-simulation of multibody vehicle systems and finite element track models[J]. Vehicle System Dynamics, 2002, 37(S1): 372-384.
    ROSE M, KEIMER R, BREITBACH E J, et al. Parallel robots with adaptronic components[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(9/10): 763-769.
    WALLRAPP O. Standardization of flexible body modeling in multibody system codes,part I:definition of standard input data[J]. Journal of Structural Mechanics, 1994, 22(3): 283-304.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  287
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-28
  • 修回日期:  2020-03-12
  • 网络出版日期:  2020-03-20
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回