• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

带钢管剪力键的装配式混凝土桥墩抗震性能

欧智菁 谢铭勤 秦志清 林上顺 俞杰

欧智菁, 谢铭勤, 秦志清, 林上顺, 俞杰. 带钢管剪力键的装配式混凝土桥墩抗震性能[J]. 西南交通大学学报, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177
引用本文: 欧智菁, 谢铭勤, 秦志清, 林上顺, 俞杰. 带钢管剪力键的装配式混凝土桥墩抗震性能[J]. 西南交通大学学报, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177
OU Zhijing, XIE Mingqin, QIN Zhiqing, LIN Shangshun, YU Jie. Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177
Citation: OU Zhijing, XIE Mingqin, QIN Zhiqing, LIN Shangshun, YU Jie. Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1169-1175, 1191. doi: 10.3969/j.issn.0258-2724.20191177

带钢管剪力键的装配式混凝土桥墩抗震性能

doi: 10.3969/j.issn.0258-2724.20191177
基金项目: 国家自然科学基金(51878172);福建省自然科学基金(2019J01779,2019H6020)
详细信息
    作者简介:

    欧智菁(1975—),女,教授,研究方向为钢管混凝土组合结构,E-mail:sina99@163.com

  • 中图分类号: U443.22;U442.55

Seismic Performance Test and FEM Analysis of Assembled Concrete Pier with Sleeve and Steel Tube Shear Connector

  • 摘要:

    为研究不同连接方式装配式混凝土桥墩的抗震性能,进行了2根装配式混凝土桥墩(连接构造分别为钢管剪力键和灌浆套筒)和1根现浇整体式混凝土桥墩的拟静力试验,分析对比试件的滞回曲线、骨架曲线、延性、刚度退化和耗能能力,采用ABAQUS通用程序建立有限元模型,并开展了有限元参数分析. 研究结果表明:3类桥墩试件水平荷载-位移滞回曲线较饱满,具有良好的抗震性能,均为整体压弯破坏,无明显的强度退化,累积耗能能力相近;在不同轴压比、长细比、混凝土强度和钢筋强度条件下,带钢管剪力键的装配式混凝土桥墩的水平峰值荷载和位移延性系数均优于传统灌浆套筒连接的装配式桥墩,提高幅值分别为4%~32%和8%~36%;轴压比、长细比、钢管剪力键嵌入深度和钢管直径是影响钢管剪力键连接的装配式混凝土桥墩抗震性能的重要参数.

     

  • 图 1  桥墩构造

    Figure 1.  Configuration of piers

    图 2  G-1桥墩制作流程

    Figure 2.  Pier production process of G-1

    图 3  桥墩试件试验装置图及加载实景

    Figure 3.  Testing device of bridge pier and loading scene

    图 4  桥墩试件破坏形态

    Figure 4.  Overall failure of pier specimen

    图 5  桥墩试件的滞回曲线

    Figure 5.  Hysteresis loops of pier specimens

    图 6  各试件的骨架曲线

    Figure 6.  Skeleton curves of specimens

    图 7  各试件的累积耗能

    Figure 7.  Cumulative energy consumption capacity of piers

    图 8  刚度退化曲线

    Figure 8.  Stiffness degradation curves

    图 9  峰值荷载对比

    Figure 9.  Peak load comparison

    图 10  位移延性系数对比

    Figure 10.  Displacement ductility coefficient comparison

    图 11  不同轴压比下骨架曲线对比

    Figure 11.  Skeleton curves under different axial comparison ratios

    图 12  不同长细比下各构件骨架曲线比较

    Figure 12.  Skeleton curves with different slenderness ratios

    图 13  不同嵌入深度骨架曲线对比

    Figure 13.  Skeleton curves under different embedded depths

    图 14  不同钢管壁厚时骨架曲线对比

    Figure 14.  Skeleton curves under different steel tube thicknesses

    图 15  不同钢管直径骨架曲线对比

    Figure 15.  Skeleton curves under different steel tube diameters

    表  1  材料性能参数

    Table  1.   Mechanical property parameters of material

    材料类型弹性模
    量/MPa
    屈服强度/MPa极限强
    度/MPa
    泊松比
    C40 混凝土3250044.2
    灌浆料38600121.8
    HRB400
    钢筋
    206000424.2604.30.30
    钢套筒206000202.5302.10.30
    钢管206000365.0433.50.29
    下载: 导出CSV

    表  2  骨架曲线主要参数对比

    Table  2.   Comparison of main parameters of skeleton curves

    试件Py/kNΔy/mmPmax/kNPu/kNΔu/mmµu
    Z-123.749.4239.6033.6688.829.43
    T-120.079.3434.2029.0794.0610.07
    G-123.299.3539.5033.58100.0010.70
    注:Py为屈服荷载;Δy为屈服位移;Pmax为水平峰值荷载;Pu为极限荷载;Δu为极限位移;µu为位移延性系数.
    下载: 导出CSV

    表  3  骨架曲线特征值对比

    Table  3.   Comparison of skeleton curve characteristics

    试件
    编号
    弹性刚度屈服荷载峰值荷载峰值荷载位移下降段刚度
    试验/
    (kN•mm−1
    模拟/
    (kN•mm−1
    误差/
    %
    试验/
    kN
    模拟/
    kN
    误差/
    %
    试验/
    kN
    模拟/
    kN
    误差/
    %
    试验/
    mm
    模拟/
    mm
    误差/
    %
    试验/
    (kN•mm−1
    模拟/
    (kN•mm−1
    误差/
    %
    Z-1 2.47 2.37 −4.20 23.74 25.20 5.80 39.60 41.69 5.00 40.01 39.95 −0.20 −0.17 −0.16 −6.30
    T-1 2.15 2.19 1.80 18.07 19.34 6.60 34.20 35.67 4.10 50.00 50.10 0.20 −0.14 −0.13 −7.70
    G-1 2.41 2.49 3.20 23.29 24.15 3.60 39.50 40.67 2.90 49.20 48.63 −1.20 −0.98 −0.96 2.10
    下载: 导出CSV
  • [1] 陈建华. 城市高架桥结构方案关键因素分析及发展构[J]. 桥梁建设,2013,43(4): 99-104.

    CHEN Jianhua. Critical factor analysis and development conceiving of structural schemes for urban viaducts[J]. Bridge Construction, 2013, 43(4): 99-104.
    [2] 曹兵,陈俊达,杜怡韩,等. 装配式圆钢管约束混凝土柱的轴压性能[J]. 西南交通大学学报,2020,55(5): 1017-1027.

    CAO Bing, CHEN Junda, DU Yihan, et al. Axial compressive properties of prefabricated circular steel tube confined concrete columns [J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1017-1027.
    [3] CORY R B, FIORE S J D, KELLY D J, et al. Design and fabrication of precast segmental concrete foundations in the US and erection in the remote arctic[C]//Structures Congress 2013. Pittsburgh: [s.n.], 2013: 991-1001.
    [4] MO Y L, WONG D C, MAEKAWA K. Seismic performance of hollow bridge columns[J]. ACI Structural Journal, 2003, 100(3): 337-348.
    [5] 黄宜. 单节段装配式桥墩抗震性能试验研究[J]. 大连理工大学学报,2016,56(5): 481-487. doi: 10.7511/dllgxb201605007

    HUANG Yi. Experimental study on seismic performance of single segmental precast bridge piers[J]. Journal of Dalian University of Technology, 2016, 56(5): 481-487. doi: 10.7511/dllgxb201605007
    [6] 杜青,高松松,卿龙邦. 内嵌钢管预应力装配式桥墩抗震性能研究[J]. 重庆交通大学学报(自然科学版),2017,36(9): 6-11. doi: 10.3969/j.issn.1674-0696.2017.09.02

    DU Qing, GAO Songsong, QING Longbang. Study on Seismic behavior of prestressed prefabricated bridge piers with embedded steel tubes[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(9): 6-11. doi: 10.3969/j.issn.1674-0696.2017.09.02
    [7] 葛继平,夏樟华,江恒. 灌浆波纹管装配式桥墩双向拟静力试验[J]. 中国公路学报,2018,31(12): 221-230,266. doi: 10.3969/j.issn.1001-7372.2018.12.022

    GE Jiping, XIA Zhanghua, JIANG Heng. Two-way quasi-static test of grouted bellows assembled bridge piers[J]. China Journal of Highway and Transport, 2018, 31(12): 221-230,266. doi: 10.3969/j.issn.1001-7372.2018.12.022
    [8] ELSAYED M, NEHDI M L. Experimental and analytical study on grouted duct connections in precast concrete construction[J]. Materials and Structures, 2017, 50(4): 198-212.
    [9] HENIN E, MORCOUS G. Non-proprietary bar splice sleeve for precast concrete construction[J]. Engineering Structures, 2015, 83: 154-162.
    [10] 葛继平,闫兴非,王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报,2018,18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005

    GE Jiping, YAN Xingfei, WANG Zhiqiang. Seismic behavior of prefabricated bridge piers connected by grouting sleeve and prestressed tendons[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52. doi: 10.3969/j.issn.1671-1637.2018.02.005
    [11] 李田田. 城市高架节段拼装桥墩构造及抗震性能研究[D]. 上海: 同济大学, 2013.
    [12] 中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936—2014[S]. 北京: 中国建筑工业出版社, 2014.
    [13] CHANG G A,MANDER J B. Seismic energy based fatigue damage analysis of bridge columns: part II−evaluation of seismic demand[M]. New York: [s.n.], 1994: 1-194.
    [14] MENEGOTTO M, PINTO P E. Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Lisbon: [s.n.], 1973: 15-22.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  233
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 修回日期:  2020-03-19
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-05-20

目录

    /

    返回文章
    返回