• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于磁场梯度张量局部模量的钢筋锈蚀监测方法

江胜华 侯建国 何英明

江胜华, 侯建国, 何英明. 基于磁场梯度张量局部模量的钢筋锈蚀监测方法[J]. 西南交通大学学报, 2021, 56(6): 1176-1184. doi: 10.3969/j.issn.0258-2724.20191174
引用本文: 江胜华, 侯建国, 何英明. 基于磁场梯度张量局部模量的钢筋锈蚀监测方法[J]. 西南交通大学学报, 2021, 56(6): 1176-1184. doi: 10.3969/j.issn.0258-2724.20191174
JIANG Shenghua, HOU Jianguo, HE Yingming. Steel Corrosion Monitoring Based on Partial Modulus of Magnetic Gradient Tensor[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1176-1184. doi: 10.3969/j.issn.0258-2724.20191174
Citation: JIANG Shenghua, HOU Jianguo, HE Yingming. Steel Corrosion Monitoring Based on Partial Modulus of Magnetic Gradient Tensor[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1176-1184. doi: 10.3969/j.issn.0258-2724.20191174

基于磁场梯度张量局部模量的钢筋锈蚀监测方法

doi: 10.3969/j.issn.0258-2724.20191174
基金项目: 国家自然科学基金(51208078);重庆市技术创新与应用示范社会民生类项目(cstc2018jscx-msybX0028);中国博士后科学基金(2017M622977);重庆市博士后科研项目(XmT2018028)
详细信息
    作者简介:

    江胜华(1982—),男,副教授,博士,研究方向为结构健康监测等,E-mail:jiangsh@whu.edu.cn

  • 中图分类号: TU37

Steel Corrosion Monitoring Based on Partial Modulus of Magnetic Gradient Tensor

  • 摘要:

    为研究钢筋混凝土中钢筋锈蚀的无损及定量监测方法,分析地球背景磁场和环境干扰磁场的影响,探讨钢筋的锈蚀率与磁场梯度张量局部模量的理论公式. 通过8根钢筋进行通电加速锈蚀试验模拟钢筋不同程度的锈蚀. 研制钢筋锈蚀监测系统,测量锈蚀前后钢筋的磁感应强度,采用磁场梯度张量局部模量反演钢筋的锈蚀率. 试验结果表明:在钢筋锈蚀后测试的磁感应强度曲线发生非等距离的偏移,磁感应强度绝对值相比锈蚀前有增大也有降低,没有一致性的规律;在锈蚀后钢筋磁场梯度绝对值及局部模量的平均值减小;在钢筋锈蚀的磁场监测中,钢筋自身的磁场梯度及局部模量远远大于环境磁场,环境磁场的梯度及其局部模量可忽略不计;8根试件的计算锈蚀率与试验中实际失重率的最小误差为0.22%,最大误差为9.40%,误差的平均值为3.92%,误差的标准差为3.32%.

     

  • 图 1  锈蚀监测试验示意

    Figure 1.  Schematic diagram of corrosion monitoring

    图 2  环境磁场的磁感应强度

    Figure 2.  Environmental magnetic field intensity

    图 3  环境磁场的磁场梯度

    Figure 3.  Environmental magnetic gradient

    图 4  环境磁场的磁场梯度局部模量

    Figure 4.  Partial modulus of environmental magnetic field

    图 5  钢筋锈蚀前、后的磁感应强度

    Figure 5.  Magnetic field intensity of rebar before and after corrosion

    图 6  钢筋锈蚀前、后的磁场梯度

    Figure 6.  Magnetic gradient of rebar before and after corrosion

    图 7  钢筋锈蚀前后的磁场梯度局部模量

    Figure 7.  Partial modulus of rebar before and after corrosion

    表  1  试件设计

    Table  1.   Specimen design

    编号D0/mml0/mm0/gt/d
    19.54503278.744
    29.43481261.814
    39.43484265.834
    49.39485266.934
    59.48504275.564
    69.44495272.384
    79.72500277.485
    89.60496274.915
    下载: 导出CSV

    表  2  钢筋锈蚀前后对比

    Table  2.   Comparison before and after corrosion

    编号D0/mmDc/mml0/mmlc/mmm0/gmc/gζ/%
    1 9.54 7.90 503 498 278.74 201.70 27.64
    2 9.43 8.82 481 478 261.81 237.87 9.14
    3 9.43 7.99 484 480 265.83 181.57 31.70
    4 9.39 9.19 485 481 266.93 244.68 8.34
    5 9.48 8.85 504 502 275.56 231.47 16.00
    6 9.44 9.08 495 492 272.38 249.73 8.32
    7 9.72 8.88 500 499 277.48 237.56 14.39
    8 9.60 9.08 496 491 274.91 249.26 9.33
    下载: 导出CSV

    表  3  环境磁场参数绝对值的平均值

    Table  3.   Average absolute values of environmental magnetic

    $E\left( {\left| { {B_{{\rm{S} }x} } } \right|} \right)$/nT$E\left( {| { {B_{{\rm{S} }y} } } |} \right)$/nT$E\left( {\left| { {B_{{\rm{S} }{\textit{z}}} } } \right|} \right)$/nT$E\left( {| { {B_{{\rm{S} }xy} } } |} \right)$/(nT•mm−1$E\left( {| { {B_{{\rm{S}}yy} } }|} \right)$/(nT•mm−1$E\left( {| { {B_{{\rm{S}}{\textit{z}}y} } } |} \right)$/(nT•mm−1$E\left( { { {C_{{\rm{S} }y}} } } \right)$/(nT•mm−1
    29142 12439 36654 2.92 6.88 5.01 10.14
    下载: 导出CSV

    表  4  1号钢筋锈蚀前后磁场参数的平均值对比

    Table  4.   Comparison of average values of magnetic parameters before and after corrosion of specimen No. 1

    项目 E(|Bx|)/nT E(|By|)/nT E(|Bz|)/nT E(|Bxy|)/(nT•mm−1 E(|Byy|)/(nT•mm−1 E(|Bzy|)/(nT•mm−1 ECy)/(nT•mm−1
    锈蚀前 36684.76 14767.02 47463.04 647.70 709.75 832.91 1464.17
    锈蚀后 32380.07 27619.37 38090.48 468.86 489.32 615.00 1062.76
    锈蚀后/
    锈蚀前
    0.882 7 1.870 3 0.822 5 0.723 9 0.689 4 0.738 4 0.725 8
    下载: 导出CSV

    Table  5.   Comparison of calculated and measured corrosion rates

    试件编号η/%ζ/%误差/%
    127.4227.640.22
    212.469.143.32
    341.1031.709.40
    416.008.347.66
    518.7516.002.75
    69.028.320.70
    78.8314.395.56
    811.119.331.78
    下载: 导出CSV
  • [1] 苏成光,刘丹,赵坪锐,等. 道床板钢筋锈蚀的细观力学影响[J]. 西南交通大学学报,2020,55(2): 273-281, 289.

    SU Chengguang, LIU Dan, ZHAO Pingrui, et al. Meso-mechanical effect of track slab rebar corrosion[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 273-281, 289.
    [2] DOUBOV A A. Screening of weld quality using the magnetic metal memory effect[J]. Weld World, 1998, 41(3): 196-199.
    [3] DOUBOV A A. The express technique of welded joints examination with use of metal magnetic memory[J]. NDT & E International, 2000, 33(6): 351-362.
    [4] FERNANDES B, TITUS M, NIMS D K, et al. Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges[J]. Journal of Bridge Engineering, 2012, 17(6): 984-988. doi: 10.1061/(ASCE)BE.1943-5592.0000379
    [5] 陈海龙,王长龙,朱红运. 基于磁梯度张量的金属磁记忆检测方法[J]. 仪器仪表学报,2016,37(3): 602-609. doi: 10.3969/j.issn.0254-3087.2016.03.017

    CHEN Hailong, WANG Changlong, ZHU Hongyun. Metal magnetic memory test method based on magnetic gradient tensor[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 602-609. doi: 10.3969/j.issn.0254-3087.2016.03.017
    [6] 马惠香,周建庭,赵瑞强,等. 基于金属磁记忆技术的钢筋应力无损检测试验[J]. 江苏大学学报(自然科学版),2018,39(3): 106-111.

    MA Huixiang, ZHOU Jianting, ZHAO Ruiqiang, et al. Non-destructive testing of steel bar stress based on metal magnetic memory technology[J]. Journal of Jiangsu University (Natural Science Edition), 2018, 39(3): 106-111.
    [7] WIEGERT R, OESCHGER J. Generalized magnetic gradient contraction based method for detection, localization and discrimination of underwater mines and unexploded ordnance[C]//Proceedings of Oceans 2005 MTS/IEEE. Washington D. C.: IEEE, 2005: 1-8
    [8] WIEGERT R F, PURPURA J W. Magnetic scalar triangulation and ranging system for autonomous underwater vehicle based detection, localization and classification of magnetic mines[C]//Oceans. Kobe: IEEE, 2005: 890-896.
    [9] LIU R, WANG H. Detection and localization of improvised explosive devices based on 3-axis magnetic sensor array system[J]. Procedia Engineering, 2010, 7: 1-9. doi: 10.1016/j.proeng.2010.11.001
    [10] SCHMIDT P W, CLARK D A. The magnetic gradient tensor:its properties and uses in source characterization[J]. Leading Edge, 2006, 25(1): 75-78. doi: 10.1190/1.2164759
    [11] WIEGERT R, LEE K, OESCHGER J. Improved magnetic STAR methods for real-time, point-by-point localization of unexploded ordnance and buried mines[C]//Oceans. Quebec City: IEEE, 2008: 1-7.
    [12] WIEGERT R F. Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines[C]//Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV. Orlando: [s.n.], 2009: 73031U.1-73031U.19.
    [13] 江胜华,申宇,褚玉程. 基于磁偶极子的磁场梯度张量缩并的试验验证及相关参数确定[J]. 中国惯性技术学报,2015,23(1): 103-106,114.

    JIANG Shenghua, SHEN Yu, CHU Yucheng. Experimental verification and related parameter’s determination for magnetic gradient tensor contraction using magnetic dipole[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 103-106,114.
    [14] 江胜华,侯建国,何英明. 基于磁偶极子的磁场梯度张量局部缩并及试验验证[J]. 中国惯性技术学报,2017,25(4): 473-477.

    JIANG Shenghua, HOU Jianguo, HE Yingming, et al. Theoretical study and experimental verification of magnetic gradient tensor partial contraction using magnetic dipole[J]. Journal of Chinese Inertial Technology, 2017, 25(4): 473-477.
    [15] 江胜华,武立群,侯建国,等. 基于磁性标签石块的桥墩局部冲刷监测方法[J]. 重庆大学学报,2016,39(1): 88-97.

    JIANG Shenghua, WU Liqun, HOU Jianguo, et al. Bridge local scour monitoring using magnetic label rock[J]. Journal of Chongqing University, 2016, 39(1): 88-97.
    [16] 江胜华,周智,欧进萍. 基于磁测的边坡深部大变形监测方法[J]. 岩土力学,2013,34(10): 3033-3038.

    JIANG Shenghua, ZHOU Zhi, OU Jinping. Slope internal large deformation monitoring using magnetic survey[J]. Rock and Soil Mechanics, 2013, 34(10): 3033-3038.
    [17] 江胜华,周智,欧进萍. 基于磁场梯度定位的边坡变形监测原理[J]. 岩土工程学报,2012,34(10): 1944-1949.

    JIANG Shenghua, ZHOU Zhi, OU Jinping. Slope deformation monitoring principle based on magnetic gradient tensor[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1944-1949.
    [18] 干伟忠,金伟良,高明赞. 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报,2011,32(2): 41-47.

    GAN Weizhong, JIN Weiliang, GAO Mingzan. Applicability study on accelerated corrosion methods of Steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32(2): 41-47.
    [19] 张伟平, 王晓刚, 顾祥林等. 加速锈蚀与自然锈蚀钢筋混凝土梁受力性能比较分析[J]. 东南大学学报(自然科学版), 2006, 36(增刊Ⅱ): 139-144.

    ZHANG Weiping, WANG Xiaogang, GU Xianglin, et al. Comparative study on structural performance of reinforced concrete beams subjected to natural corrosion and accelerated corrosion[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(SⅡ): 139-144.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  260
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-05-26
  • 网络出版日期:  2020-06-03
  • 刊出日期:  2020-06-03

目录

    /

    返回文章
    返回