• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

粉煤灰-矿渣基地聚物混凝土的抗碳化性能

原元 赵人达 占玉林 李福海 成正清 李健

原元, 赵人达, 占玉林, 李福海, 成正清, 李健. 粉煤灰-矿渣基地聚物混凝土的抗碳化性能[J]. 西南交通大学学报, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151
引用本文: 原元, 赵人达, 占玉林, 李福海, 成正清, 李健. 粉煤灰-矿渣基地聚物混凝土的抗碳化性能[J]. 西南交通大学学报, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151
YUAN Yuan, ZHAO Renda, ZHAN Yulin, LI Fuhai, CHENG Zhengqing, LI Jian. Carbonation Resistance of Fly Ash-Slag Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151
Citation: YUAN Yuan, ZHAO Renda, ZHAN Yulin, LI Fuhai, CHENG Zhengqing, LI Jian. Carbonation Resistance of Fly Ash-Slag Based Geopolymer Concrete[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1275-1282. doi: 10.3969/j.issn.0258-2724.20191151

粉煤灰-矿渣基地聚物混凝土的抗碳化性能

doi: 10.3969/j.issn.0258-2724.20191151
基金项目: 国家自然科学基金(51778531);四川省科研计划(2019YFG0001,2019YJ0219);教育部产学合作协同育人项目(201801098032)
详细信息
    作者简介:

    原元(1992—),男,博士研究生,研究方向为高使用性混凝土材料性能及结构应用,E-mail:1181491115@qq.com

    通讯作者:

    李福海(1979—),男,高级工程师,博士,研究方向为新型材料及混凝土结构耐久性,E-mail:lifuhai2007@home.swjtu.edu.cn

  • 中图分类号: TU528.41

Carbonation Resistance of Fly Ash-Slag Based Geopolymer Concrete

  • 摘要:

    F级粉煤灰-矿渣基地聚物混凝土,即GPC-10(矿渣掺量10%,80 °C高温养护)和GPC-50(矿渣掺量50%,标准养护)力学性能良好,为进一步研究其抗碳化性能, 首先,对这两种地聚物混凝土进行了快速碳化试验,并与作为对照组的普通水泥混凝土(OPCC)进行了比较,通过抗压强度和劈裂抗拉强度评价了碳化对混凝土的损伤;其次,为分析损伤原因,分别通过X射线能谱分析(EDS)和压汞测试(MIP),对碳化后的成分和孔结构进行了研究;最后,建立了两种地聚物混凝土的碳化模型. 研究结果表明:相比OPCC,地聚物混凝土的抗碳化能力薄弱,尤其是钙含量较高的GPC-50,其主要产物C—A—S—H会与CO2反应而发生分解,导致孔隙率增大,进而加快了碳化速率,且碳化深度与时间呈线性关系;OPCC、GPC-10以及GPC-50的28 d碳化深度分别达到了2.0、9.2、18.8 mm.

     

  • 图 1  3种混凝土的pH值变化(0、3、14、28 d)

    Figure 1.  pH changes of three types of concrete (0、3、14、28 d)

    图 2  碳化对混凝土力学性能的影响

    Figure 2.  Effect of carbonation on mechanical properties of concrete

    图 3  地聚物凝胶EDS谱图

    Figure 3.  EDS spectra of geopolymer gel

    图 4  MIP分析结果

    Figure 4.  MIP analysis results

    图 5  GPC-50与GPC-10的碳化模型

    Figure 5.  Carbonation models of GPC-50 and GPC-10

    表  1  粉煤灰、矿渣及水泥化学成分

    Table  1.   Compositions ratios of fly ash,slag and cement %

    类型SiO2Al2O3Fe2O3CaOP2O5Na2OK2OMnOMgOSO3Tio2SrO
    粉煤灰62.0425.54.283.960.310.461.270.731.330.12
    矿渣34.1115.360.8335.990.400.621.076.582.502.410.12
    水泥20.015.683.2065.890.080.091.170.190.812.00
    下载: 导出CSV

    表  2  混凝土配合比设计

    Table  2.   Mix proportion design and numbering of the concrete specimens kg/m3

    编号粉煤灰炉渣水泥砾石Na2SiO3NaOH减水剂养护条件
    GPC-10346.738.5601.71203.5165.766.280 ℃ sealed
    GPC-50192.6192.6601.71203.5165.766.2标准
    OPCC56.056.0448.0626.01022.0174.72.5标准
    下载: 导出CSV

    表  3  碳化对混凝土力学性能的影响

    Table  3.   Effect of carbonation on mechanical properties of concrete

    编号3 d7 d14 d21 d28 d
    GPC-50
    GPC-10
    OPCC
    下载: 导出CSV

    表  4  原子相对数量

    Table  4.   Relative number of atoms %

    编号OCSiAlNaCaCa/NaSi/Al
    GPC-1059.8018.1011.803.303.903.100.793.60
    GPC-5054.1029.405.806.500.703.404.800.89
    下载: 导出CSV
  • [1] 阿列克谢耶夫. 钢筋混凝土结构中钢筋腐蚀与保护[M]. 黄可信, 吴兴祖, 蒋仁敏, 等译. 北京: 中国建筑工业出版社, 1983: 19-35.
    [2] 金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京: 科学出版社, 2002: 16-25.
    [3] MARQUES P F, CARLOS C, NUNES A. Carbonation service life modelling of RC structures for concrete with Portland and blended cements[J]. Cement and Concrete Composites, 2013, 37(3): 171-184.
    [4] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. doi: 10.1016/j.cemconres.2010.11.012
    [5] SHI C J, FERNÁNDEZ-JIMÉNEZ A, PALOMO A. New cements for the 21st century:the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763. doi: 10.1016/j.cemconres.2011.03.016
    [6] TENNAKOON C, SHAYAN A, SANJAYAN J G, et al. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests[J]. Materials and Design, 2017, 116: 287-299. doi: 10.1016/j.matdes.2016.12.030
    [7] BAKHAREV T. Resistance of geopolymer materials to acid attack[J]. Cement and Concrete Research, 2005, 32(4): 658-670.
    [8] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. doi: 10.1016/j.cemconres.2004.09.002
    [9] ZHUANG X Y, CHEN L, KOMARNENI S, et al. Fly ash-based geopolymer:clean production,properties and applications[J]. Journal of Cleaner Production, 2016, 125: 253-267. doi: 10.1016/j.jclepro.2016.03.019
    [10] ZHANG J, SHI C J, ZHANG Z H, et al. Durability of alkali-activated materials in aggressive environments:a review on recent studies[J]. Construction and Building Materials, 2017, 152(2): 598-613. doi: 10.1016/j.conbuildmat.2017.07.027
    [11] BERNAL S A, PROVIS J L, WALKLEY B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash,and effects of accelerated carbonation[J]. Cement and Concrete Research, 2013, 53: 127-144. doi: 10.1016/j.cemconres.2013.06.007
    [12] LAW D W, ADAM A A, MOLYNEAUX T K, et al. Long term durability properties of class F fly ash geopolymer concrete[J]. Materials and Structures, 2015, 48(3): 721-731. doi: 10.1617/s11527-014-0268-9
    [13] BAKHAREV T, SANJAYAN J G, CHENG Y B. Resistance of alkali-activated slag concrete to carbonation[J]. Cement and Concrete Research, 2001, 31(9): 1277-1283. doi: 10.1016/S0008-8846(01)00574-9
    [14] BADAR M S, KUPWADE-PATIL K, BERNAL S A, et al. Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes[J]. Construction and Building Materials, 2014, 61: 79-89. doi: 10.1016/j.conbuildmat.2014.03.015
    [15] PASUPATHY K, BERNDT M, CASTEL A, et al. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years[J]. Construction and Building Materials, 2016, 125: 661-669. doi: 10.1016/j.conbuildmat.2016.08.078
    [16] CRIADO M, PALOMO A, FERNÁNDEZ-JIMÉNEZ A. Alkali activation of fly ashes. part 1:effect of curing conditions on the carbonation of the reaction products[J]. Fuel, 2005, 84(16): 2048-2054. doi: 10.1016/j.fuel.2005.03.030
    [17] 黄琪,石宵爽,王清远,等. 粉煤灰基地聚物混凝土的碳化性能研究[J]. 中国农村水利水电,2015(7): 121-125,130. doi: 10.3969/j.issn.1007-2284.2015.07.031

    HUANG Qi, SHI Xiaoshuang, WANG Qingyuan, et al. Research on carbonation of fly ash geopolymeric concrete[J]. China Rural Water and Hydropower, 2015(7): 121-125,130. doi: 10.3969/j.issn.1007-2284.2015.07.031
    [18] 黄琪,石宵爽,王清远,等. 再生粗骨料对粉煤灰基地聚物混凝土碳化性能的影响[J]. 硅酸盐通报,2015,34(5): 1264-1269,1281.

    HUANG Qi, SHI Xiaoshuang, WANG Qingyuan, et al. Effect of recycled coarse aggregate on carbonation resistance of fly ash geopolymeric concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1264-1269,1281.
    [19] 陈晓星,曹海琳,翁履谦,等. 碱激发水泥砂浆碳化行为研究[J]. 武汉理工大学学报,2014,36(3): 18-22.

    CHEN Xiaoxing, CAO Hailin, WENG Lvqian, et al. Research on carbonation process of alkali-activated cement mortars[J]. Journal of Wuhan University of Technology, 2014, 36(3): 18-22.
    [20] 贺鹏飞. 混凝土碳化研究进展[C]//《工业建筑》2018年全国学术年会论文集(上册). 北京: 工业建筑杂志社, 2018: 316-321.
    [21] KUMAR S S, VASUGI J, AMBILY P S, et al. Development and determination of mechanical properties of fly ash and slag blended geopolymer concrete[J]. International Journal of Scientific and Engineering Research, 2013, 4(8): 1-5.
    [22] NATH P, SARKER P K. Effect of GGBFS on setting,workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. doi: 10.1016/j.conbuildmat.2014.05.080
    [23] 杨世玉,赵人达,靳贺松,等. 单组分地聚物砂浆的力学性能和微观结构分析[J]. 西南交通大学学报,2021,56(1): 101-107.

    YANG Shiyu, ZHAO Renda, JIN Hesong, et al. Mechanical performance and microstructure of single component geopolymer mortar[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 101-107.
    [24] ZHANG H E, SHI X S, WANG Q Y. Effect of curing condition on compressive strength of fly ash geopolymer concrete[J]. ACI Materials Journal, 2018, 115(2): 191-196.
    [25] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.
    [26] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.
    [27] BAKHAREV T. Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cement and Concrete Research, 2004, 35(6): 1224-1232.
    [28] ZHAO R D, YUAN Y, CHENG Z Q, et al. Freeze-thaw resistance of class F fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2019, 222(3): 474-483. doi: 10.1016/j.conbuildmat.2019.06.166
    [29] 杨绿峰,成荻,刘才勇,等. 矿物掺合料混凝土碳化分析的实用预测模型[J]. 混凝土,2016(7): 79-83. doi: 10.3969/j.issn.1002-3550.2016.07.019

    YANG Lufeng, CHENG Di, LIU Caiyong, et al. Practical prediction model of carbonation depth for concrete with mineral admixtures[J]. Concrete, 2016(7): 79-83. doi: 10.3969/j.issn.1002-3550.2016.07.019
    [30] SAETTA A V, VITALIANI R V. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures part I:theoretical formulation[J]. Cement and Concrete Research, 2004, 34(4): 571-579. doi: 10.1016/j.cemconres.2003.09.009
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  195
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-05-27
  • 网络出版日期:  2020-09-21
  • 刊出日期:  2020-09-21

目录

    /

    返回文章
    返回