• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

粗橡胶粉SBS改性沥青透水混合料抗水损害性能

肖飞鹏 宗启迪 王金刚 陈军 刘继

肖飞鹏, 宗启迪, 王金刚, 陈军, 刘继. 粗橡胶粉SBS改性沥青透水混合料抗水损害性能[J]. 西南交通大学学报, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116
引用本文: 肖飞鹏, 宗启迪, 王金刚, 陈军, 刘继. 粗橡胶粉SBS改性沥青透水混合料抗水损害性能[J]. 西南交通大学学报, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116
XIAO Feipeng, ZONG Qidi, WANG Jingang, CHEN Jun, LIU Ji. Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116
Citation: XIAO Feipeng, ZONG Qidi, WANG Jingang, CHEN Jun, LIU Ji. Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116

粗橡胶粉SBS改性沥青透水混合料抗水损害性能

doi: 10.3969/j.issn.0258-2724.20191116
基金项目: 国家自然科学基金(51808404)
详细信息
    作者简介:

    肖飞鹏(1973—),男,教授,博士,研究方向为道路材料,E-mail:fpxiao@tongji.edu.cn

  • 中图分类号: U41

Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture

  • 摘要: 排水沥青混凝土孔隙率大,具有良好的排水、降噪功能,但是易发生水损害. 使用粗橡胶粉和SBS(styrene-butadiene-styrene block copolymer)改性剂对基质沥青进行复合改性. 采用冻融劈裂强度比对透水沥青混合料的抗水损害性能进行评价. 研究SBS用量、最大公称粒径、粗橡胶粉用量、级配各筛孔通过率、消石灰用量和沥青用量6个影响因素对透水沥青混凝土抗水害损性能的影响,揭示粗橡胶粉SBS复配沥青混合料的抗水损害机理. 研究结果表明:SBS用量的增加、集料最大公称粒径的增大、消石灰的加入均能提高透水混合料的冻融劈裂强度比;为了获得最佳的水稳定性和良好的经济性,建议SBS与粗橡胶粉的最佳掺量分别为6%和10%,并且通过灰关联分析得出了影响各规格混合料抗水损害性能的关键筛孔.

     

  • 图 1  SBS掺量对冻融劈裂性能的影响

    Figure 1.  Effect of SBS contents on freeze-thaw splitting performance

    图 2  粗橡胶粉掺量对PAC10冻融劈裂性能的影响

    Figure 2.  Effect of coarse crumb rubber content on freeze-thaw splitting performance

    图 3  劈裂试验试件应力分布及开裂示意

    Figure 3.  Stress distribution and cracking in splitting test

    图 4  不同级配规格混合料的冻融劈裂剖面

    Figure 4.  Freeze-thaw splitting fractural surfaces of mixtures with different NMPS

    图 5  不同消石灰掺量对冻融劈裂强度的影响

    Figure 5.  Influence of slaked lime contents on freeze-thaw splitting strengths

    图 6  各筛孔通过率与劈裂强度、TSR灰色关联度结果

    Figure 6.  Gray correlations between passing percentages of each sieve size,splitting strength and TSR

    图 7  不同沥青用量的混合料冻融劈裂结果

    Figure 7.  Freeze-thaw cracking results of mixtures with different asphalt contents

    表  1  不同透水沥青混合料级配各筛孔通过率

    Table  1.   Gradations of PAC with various nominal maximum particle sizes %

    级配编号筛孔/mm
    26.00019.00016.00013.2009.5004.7502.3601.1800.6000.3000.1500.075
    PAC10 #1100.0100.0100.0100.098.956.515.09.28.88.48.17.1
    PAC10 #2100.0100.0100.0100.098.954.112.16.66.56.46.45.8
    PAC10 #3100.0100.0100.0100.098.956.412.56.66.56.56.45.9
    PAC10 #4100.0100.0100.0100.098.954.115.39.99.18.37.76.6
    PAC10 #5100.0100.0100.0100.098.954.218.613.211.710.29.07.4
    PAC13 #1100.0100.0100.085.069.426.911.710.49.79.08.47.2
    PAC13 #2100.0100.0100.085.069.222.210.09.48.78.07.46.3
    PAC13 #3100.0100.0100.085.069.426.911.710.29.48.57.76.5
    PAC13 #4100.0100.0100.085.069.325.413.912.711.39.98.77.0
    PAC13 #5100.0100.0100.085.069.428.517.816.014.011.810.07.8
    PAC16 #1100.0100.099.972.645.117.09.89.28.57.87.26.1
    PAC16 #2100.0100.099.972.645.119.412.711.710.59.28.26.7
    PAC16 #3100.0100.099.972.645.221.715.714.212.510.69.27.2
    PAC16 #4100.0100.099.972.144.118.411.710.99.88.77.86.5
    PAC20 #1100.096.792.077.551.017.910.09.48.77.97.36.3
    PAC20 #2100.096.792.077.551.120.212.911.910.79.48.36.8
    PAC20 #3100.096.792.077.551.122.615.814.412.710.89.37.4
    PAC20 #4100.096.792.077.551.121.013.912.711.39.98.77.0
    下载: 导出CSV

    表  2  不同级配规格透水沥青混合料的性能试验结果

    Table  2.   Performance test results for different types of PAC

    规格劈裂强度/MPaTSR/%MS/kNγfγt
    冻融组未冻融组
    PAC200.460.5583.646.592.0102.518
    PAC160.420.5478.356.362.0202.511
    PAC130.300.4565.756.001.9632.495
    PAC100.220.3660.425.711.8882.469
    下载: 导出CSV
  • XIAO F, HERNDON D A, AMIRKHANIAN S, et al. Aggregate gradations on moisture and rutting resistances of open graded friction course mixtures[J]. Construction and Building Materials, 2015, 85: 127-135.
    PAN Qinxue, QIAN Guoping, LIU Hongfu, et al. Applicability analysis on index values of water stability of asphalt mixture[C]//Proceedings of the 4th International Conference on GreenBuilding, Materials and Civil Engineering, GBMCE 2014. Florida: CRC Press, 2015: 377-381.
    孙璐,辛宪涛,任皎龙. 纳米改性沥青混合料路用性能[J]. 东南大学学报(自然科学版),2013,43(4): 873-876.

    SUN Lu, XIN Xiantao, REN Jiaolong. Pavement performance of nanomaterial modified asphalt mixture[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(4): 873-876.
    YUAN Yuqing, GAO Danying, ZHAO Jun, et al. Experimental study on water stability of asphalt mixture[J]. Advonced Materials Research, 2011, 266: 135-138.
    LI Junxiao, FU Wei, ZANG Hechao. Performance on water stability of cement-foamed asphalt cold recycled mixture[C]//The 8th International Conference on Mechanical and Aerospace Engineering (ICMAE 2017). Prague: IEEE, 2018: 2005-2010.
    LIU Minghui. Experimental study on water stability of cold recycled mixture stabilized with emulsified asphalt[J]. Applied Mechanics and Materials, 2012, 204/205/206/207/208: 1914-1917.
    郭平. Sasobit®温拌沥青混合料水稳定性能研究[J]. 郑州大学学报(工学版),2010,31(5): 36-39. doi: 10.3969/j.issn.1671-6833.2010.05.009

    GUO Ping. Study on water stability of Sasobit® warm mixture asphalt[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(5): 36-39. doi: 10.3969/j.issn.1671-6833.2010.05.009
    HUANG Weirong, LIU Tao, YANG Donglai. Research of grading ’s influence on asphalt mixture ’s water stability[C]//Proceedings of the 2011 IEEE International Conference on Automation and Logistics (ICAL). Piscataway: IEEE, 2011: 456-460.
    GUO Xuedong, CAO Jian, FANG Xiangyang. Study of water stability of asphalt mixture based on residual water[J]. Frontiers of Green Building,Materials and Civil Engineering, 2011, 71/72/73/74/75/76/77/78: 1791-1794.
    GUO Xuedong, CAO Jian, FANG Xiangyang. Study of water stability of AC and SMA asphalt mixture based on water content[J]. Advanced Materials Research, 2012, 457/458: 435-438. doi: 10.4028/www.scientific.net/AMR.457-458.435
    SHEN Guoyin. Common diseases and preventive measures during the asphalt concrete pavement construction[C]//Proceedings of the 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM 2012). Los Alamitos: IEEE Computer Society, 2012: 198-203.
    丛林,郑晓光,吕伟民. 细集料泥土含量对沥青混合料水稳定性的影响[J]. 同济大学学报(自然科学版),2006,34(5): 619-623.

    CONG Lin, ZHENG Xiaoguang, LV Weimin. Effect of clay content in fine aggregate on water stability of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2006, 34(5): 619-623.
    MA Tao, HUANG Xiaoming, ZHAO Yongli, et al. Aging behaviour and mechanism of SBS-modified asphalt[J]. Journal of Testing and Evaluation, 2012, 40(7): 1186-1191.
    WANG Tao, XIAO Feipeng, AMIRKHANIAN S, et al. A review on low temperature performances of rubberized asphalt materials[J]. Construction and Building Materials, 2017, 145: 483-505.
    KADLECEK S V, MODRY S, KADLECEK J V. Size effect of test specimens on tensile splitting strength of concrete:general relation[J]. Materials and Structures/Materiaux et Constructions, 2002, 34: 28-34.
    YANG Wenfeng. Effect and its mechanisms of hydrated lime on water stability of hot asphalt mixture[C]//Materials, Mechanical and Manufacturing Engineering. Zurich-Durnten: Trans Tech Publications Ltd., 2014: 22-26.
    肖飞鹏,宗启迪,陈军,等. 等离子体微表处理胶粉改性沥青工艺条件优化分析[J]. 中国公路学报,2019,32(4): 170-176.

    XIAO Feipeng, ZONG Qidi, CHEN Jun, et al. Processing conditions optimization analysis of crumb rubber modified asphalt treated by plasma micrometer processing method[J]. China Journal of Highway and Transport, 2019, 32(4): 170-176.
    张英,刘昌清,毛国军,等. LSPM沥青用量与水稳定性的关系探讨[J]. 建材技术与应用,2015(3): 8-9. doi: 10.3969/j.issn.1009-9441.2015.03.003

    ZHANG Ying, LIU Changqing, MAO Guojun, et al. Relationship between LSPM asphalt amount and water stability[J]. Research and Application of Building Materials, 2015(3): 8-9. doi: 10.3969/j.issn.1009-9441.2015.03.003
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  195
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-03-04
  • 网络出版日期:  2020-04-08
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回