• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于全卷积神经网络的机车信号降噪

邢玉龙 王剑 赵会兵 朱林富

邢玉龙, 王剑, 赵会兵, 朱林富. 基于全卷积神经网络的机车信号降噪[J]. 西南交通大学学报, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111
引用本文: 邢玉龙, 王剑, 赵会兵, 朱林富. 基于全卷积神经网络的机车信号降噪[J]. 西南交通大学学报, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111
XING Yulong, WANG Jian, ZHAO Huibing, ZHU Linfu. Cab Signal Denoising Process Based on Fully Convolutional Networks[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111
Citation: XING Yulong, WANG Jian, ZHAO Huibing, ZHU Linfu. Cab Signal Denoising Process Based on Fully Convolutional Networks[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 444-450. doi: 10.3969/j.issn.0258-2724.20191111

基于全卷积神经网络的机车信号降噪

doi: 10.3969/j.issn.0258-2724.20191111
基金项目: 国家自然科学基金重大项目(61490705)
详细信息
    作者简介:

    邢玉龙(1992—),男,博士研究生,研究方向为交通信息工程及控制,E-mail:xingyulong@bjtu.edu.cn

    通讯作者:

    王剑(1978—),男,教授,研究方向为轨道交通自动化与控制,E-mail:wangj@bjtu.edu.cn

  • 中图分类号: U284

Cab Signal Denoising Process Based on Fully Convolutional Networks

  • 摘要: 机车信号从钢轨提取轨道电路信号作为行车凭证,其译码输出性能对列控系统的可靠性和安全性有直接影响. 但列车运行过程中,机车信号不可避免地混入大量噪声和干扰,译码前需要降噪以提高准确性. 为此,提出一种基于全卷积神经网络(fully convolutionalnetworks, FCN)的机车信号降噪方法,该方法利用基于原始波形“端到端”处理方式的FCN,直接从时域对机车信号进行降噪处理,以提高信噪比(signal-to-noise ratio,SNR);并利用仿真和实测数据对本方法进行了实验. 结果表明:相较于传统基于频谱的滤波方法,本方法对带内干扰有更显著的效果,采用FCN能使机车信号信噪比提高8~14 dB,可有效降低带内噪声.

     

  • 图 1  全连接层结构

    Figure 1.  Fully connected layer structure

    图 2  局部连接

    Figure 2.  Local connection

    图 3  FCN降噪模型整体结构

    Figure 3.  Overall structure of denoising model based on FCN

    图 4  神经网络结构

    Figure 4.  Network structure

    图 5  载频1.7 kHz机车信号降噪前、后频谱

    Figure 5.  Spectrum of cab signal with 1.7 kHz carrier frequency befor and after denoising

    图 6  一起信号误译示例

    Figure 6.  Example of signal decoding error

    图 7  误译信号降噪前、后频谱

    Figure 7.  Spectrum of decoding-error signal befor and after denoising

    表  1  信息特征参数

    Table  1.   Information characteristic parameters Hz

    参数指标
    ${f_{\rm{c}}}$上行1998.7,2001.4,2598.7,2601.4
    下行1698.7,1701.4,2298.7,2301.4
    ${f_{\rm{d}}}$${\rm{10} }{\rm{.3 + 1} }{\rm{.1} } n{\simfont\text{,} }n = 0{\simfont\text{~} } 17$
    $\Delta f$$ \pm 11$
    下载: 导出CSV

    表  2  样本的噪声特性

    Table  2.   Noise characteristics of samples

    噪声类型相关参数样本/个样本长
    度/点
    频率/Hz幅度/V
    单频噪声1650~26500~2250002048
    谐波干扰1650、1700、···、26500~1250002048
    带内干扰${f_{\rm{c}}} - {f_{\rm{d}}}{\simfont\text{~} } {f_{\rm{c}}} + {f_{\rm{d}}}$0~2250002048
    白噪声0~10250002048
    下载: 导出CSV

    表  3  本文算法RMSE结果与其他算法对比

    Table  3.   RMSE comparison with various algorithms V

    噪声类型去噪前FCNCNN带通滤波EMD稀疏分解
    单频噪声0.5930.2440.4300.4930.3860.317
    谐波干扰1.2870.1180.3840.5470.4980.409
    白噪声1.1990.2640.3210.6540.3320.300
    带内干扰0.8590.2360.2870.7190.6030.580
    全体噪声0.9450.1690.1980.6860.5540.526
    下载: 导出CSV

    表  4  本文算法SNR结果与其他算法对比

    Table  4.   SNR comparison with various algorithms dB

    噪声类型去噪前FCNCNN带通滤波EMD稀疏分解
    单频噪声3.1978.8744.3943.3385.4966.009
    谐波干扰−2.75614.2145.3312.2354.4774.848
    白噪声−2.9309.7349.1720.8328.6729.037
    带内干扰0.20311.94311.2182.4935.4925.984
    全体噪声0.03013.01212.1643.1384.3604.896
    下载: 导出CSV
  • 邱宽民. JT1-CZ2000型机车信号车载系统[M]. 北京: 中国铁道出版社, 2010: 1-12.
    ZHAO Linhai, LI Zhankui, LIU Weining. The compensation capacitors fault detection method of jointless track circuit based on DBWT and WR[C]//IEEE International Conference on Intelligent Computing & Intelligent Systems. Shanghai: IEEE, 2009: 875-879.
    剌博. 基于EMD降噪的轨道移频信号检测算法研究[D]. 西安: 西安理工大学, 2014.
    轩春霞,王小敏,杨扬,等. 基于稀疏分解的轨道移频信号降噪算法研究[J]. 计算机测量与控制,2014,22(9): 2870-2874. doi: 10.3969/j.issn.1671-4598.2014.09.048

    XUAN Chunxia, WANG Xiaomin, YANG Yang, et al. Denoising algorithm for track circuit frequency:shift signal based on sparse decomposition[J]. Computer Measurement & Control, 2014, 22(9): 2870-2874. doi: 10.3969/j.issn.1671-4598.2014.09.048
    NAIK D C, MURTHY A S, NUTHAKKI R. Modified magnitude spectral subtraction methods for speech enhancement[C]//2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques(ICEECCOT). Mysuru: [s.n.], 2017: 274-279.
    EPHRAIM Y, MALAH D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(6): 1109-1121.
    SCALART P, FILHO J V. Speech enhancement based on a priori signal to noise estimation[C]//IEEE International Conference on Acoustics. Atlanta: IEEE, 1996: 629-632.
    IBARROLA F J, DI PERSIA L, SPIES R D. A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation[J]. Signal Processing, 2018, 151(4): 89-98.
    HOU J C, WANG S S, LAI Y H, et al. Audio-visual speech enhancement using multimodal deep convolutional neural networks[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(2): 117-128.
    PALAZ D, COLLOBERT R, DOSS M M. Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks[C]//14th Annual Conference of the International Speech Communication Association. Lyon: Interspeech, 2013: 1765-1769.
    OORD A V D, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. Computer Science, 2016, 1: 1-15.
    FU S W, WANG T W, TSAO Y, et al. End-to-end waveform utterance enhancement for direct evaluation metrics optimization by fully convolutional neural networks[J]. IEEE/ACM Transactions on Audio Speech & Language Processing, 2018, 26(9): 1570-1584.
    赵自信. ZPW—2000A无绝缘移频自动闭塞系统的技术综述[J]. 铁路通信信号工程技术, 2003, 2003(增刊1): 12-19.

    ZHAO Zixin. A review of ZPW-2000 automatic block with jointless frequency-shift system[J]. Railway Signalling & Communication Engineering, 2003, 2003(S1): 12-19.
    中华人民共和国铁道部. ZPW-2000轨道电路技术条件: TB/T 3206—2008[S]. 北京: 中国铁道出版社, 2008
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine, 2015, 39(4): 640-651.
    THAKKAR V, TEWARY S, CHAKRABORTY C.Batch normalization in convolutional neural networks: a comparative study with CIFAR-10 data[C]//2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). Kolkata: [s.n.], 2018: 1-5.
    ZHANG Yudong, PAN Chichun, SUN Junding, et al. Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU[J]. Journal of Computational Science, 2018, 28(9): 1-10.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  252
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2020-05-18
  • 网络出版日期:  2021-01-11
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回