Peak-Current and Peak-Voltage Control Scheme for Single-Inductor Dual-Output Buck Converter
-
摘要: 为减小工作于连续导电模式(continue conduction mode,CCM)的单电感双输出(single-inductor dual-output,SIDO) Buck变换器的输出交叉影响,提出了峰值电流-峰值电压(peak-current and peak-voltage,PCPV)控制方法. 分析了PCPV控制SIDO Buck变换器的电路结构和工作原理,利用电感伏秒平衡和电容安秒平衡原理推导了输出电压与输入电压的增益表达式,并采用状态空间平均方法,建立了PCPV控制SIDO Buck变换器的状态空间平均模型;在此基础上,建立了PCPV控制SIDO Buck变换器的小信号模型,并与传统峰值电流(peak-current-mode,PCM)控制SIDO Buck变换器对比分析交叉影响. 研究结果表明:PCM控制SIDO Buck变换器输出电压较大的输出支路对输出电压较小的输出支路的交叉影响为300 mV,而PCPV控制SIDO Buck变换器输出电压较大的输出支路对输出电压较小的输出支路几乎无交叉影响;PCM控制SIDO Buck变换器的负载瞬态调节时间为12.5 ms,而PCPV控制SIDO Buck变换器的负载瞬态调节时间最大为10 ms. 相比PCM控制SIDO Buck变换器,PCPV控制SIDO Buck变换器有效地减小了交叉影响,且提高了瞬态性能. 最后通过实验结果验证了理论分析的正确性.Abstract: In order to reduce the output cross regulation of single-inductor dual-output (SIDO) buck converter in continuous conduction mode (CCM), a peak-current and peak-voltage (PCPV) control method is proposed. The circuit structure and operating principle of the PCPV-controlled SIDO buck converter are analyzed. The gain expressions of input voltage and output voltage are deduced according to the principle of inductor volt-second balance and capacitor ampere-second balance. The state space average model of PCPV-controlled SIDO buck converter is established by using the state space average method. On this basis, the small signal model of PCPV-controlled SIDO buck converter is established, which is compared with traditional peak-current-mode (PCM) controlled SIDO Buck converter in the cross regulation. The research results show that the cross regulation from the higher voltage output branch to lower voltage output branch of PCM controlled SIDO Buck converter is 300 mV, and its transient regulation time of load variation is 12.5 ms. However, the proposed converter can reduce the cross regulation to almost zero and reduce the transient regulation time to 10 ms. Compared to the PCM controlled SIDO buck converter, the proposed PCPV-controlled SIDO Buck converter can effectively reduce the cross regulation and improve the transient performance. Finally, the theoretical analysis of the proposed method is verified by experimental results.
-
表 1 PCPV控制SIDO Buck converter电路参数
Table 1. Circuit parameters of PCPV-controlled SIDO Buck converter
参数 数值 vi/V 10 v1,v2/V 3.3,5.0 R1,R2/Ω 3.3,2.5 C1,C2/μF 470 L/μH 100 T/μs 20 rs/mΩ 50 kp1,kp2 4.0,2.5 ki1,ki2 4 000,2 500 -
YANG W H, YANG H A, HUANG C J, et al. A high-efficiency single-inductor multiple-output Buck-type LED driver with average current correction technique[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3375-3385. doi: 10.1109/TPEL.2017.2709039 许伟伟. 适用于便携式产品的单电感多输出直流-直流变换器的研究与设计[D]. 上海: 复旦大学, 2011. MARCO HO Y Z, GUO J P, MAK K L, et al. A single-inductor multiple-output auto-buck-boost DC-DC converter with auto-phase allocation[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2296-2313. doi: 10.1109/TPEL.2015.2432040 王瑶,许建平,周国华. 电压型控制SIDO CCM Buck变换器的统一离散迭代映射模型及稳定性研究[J]. 中国电机工程学报,2018,38(9): 2717-2727.WANG Yao, XU Jianping, ZHOU Guohua. Unified discrete iterative map model and stability research of voltage-mode controlled single-inductor dual-output CCM Buck converter[J]. Proceedings of the CSEE, 2018, 38(9): 2717-2727. 王瑶. 单电感双输出CCM Buck变换器输出交叉影响研究[D]. 成都: 西南交通大学, 2014. 冉翔,周国华,周述晗. 共模-差模电压型控制连续导电模式单电感双输出Boost变换器交叉影响特性分析[J]. 电工技术学报,2019,34(12): 2519-2528.RAN Xiang, ZHOU Guohua, ZHOU Shuhan. Cross-regulation characteristic of continuous conduction mode single-inductor dual-output Boost converter with common-mode voltage and differential-mode voltage control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2519-2528. 周国华,冉翔,周述晗,等. 恒定谷值电流型变频控制CCM单电感双输出Boost变换器建模与分析[J]. 中国电机工程学报,2018,38(23): 7015-7025.ZHOU Guohua, RAN Xiang, ZHOU Shuhan, et al. Modeling and analysis of CCM single-inductor dual-output Boost converter with fixed valley current mode variable frequency control[J]. Proceedings of the CSEE, 2018, 38(23): 7015-7025. 王瑶,许建平,钟曙,等. 单电感双输出CCM Buck变换器输出交叉影响分析[J]. 中国电机工程学报,2014,34(15): 2371-2378.WANG Yao, XU Jianping, ZHONG Shu, et al. The cross regulation analysis of single-inductor dual-output Buck converter[J]. Proceedings of the CSEE, 2014, 34(15): 2371-2378. MA D S, KI W H, TSUI C Y, et al. Single inductor multiple output switching converters with time multiplexing control in discontinuous conduction mode[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1): 89-100. doi: 10.1109/JSSC.2002.806279 MA D S, KI W H, TSUI C Y. A pseudo-CCM/DCM SIMO switching converter with freewheel switching[J]. IEEE Joural of Solid-State Circuits, 2003, 38(6): 1007-1014. doi: 10.1109/JSSC.2003.811976 MA D S, KI W H. Fast-transient PCCM switching converter with freewheel switching control[J]. IEEE Joural of Solid-State Circuits, 2007, 54(9): 825-829. XU W W, LI Y. A dual-mode single-inductor dual-output switching converter with small ripple[J]. IEEE Transactions Power Electronics, 2010, 25(3): 614-623. doi: 10.1109/TPEL.2009.2033927 PRADIPTA P, GHOSH J, PATRA A. Control scheme for reduced regulation in single-inductor multiple-output DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5095-5104. doi: 10.1109/TIE.2012.2227895 WANG Y, XU J P, ZHOU G H. A cross regulation analysis for single-inductor dual-output CCM Buck converters[J]. Journal of Power Electronics, 2016, 16(5): 1802-1812. doi: 10.6113/JPE.2016.16.5.1802 DASIKA J D, BAHRANI B, SAEEDIFARD M, et al. Multivariable control of single-inductor dual-output Buck converters[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2061-2070. doi: 10.1109/TPEL.2013.2266616 LEE A T L, TAN S C, HUI S Y, et al. A ripple control dual-mode single-inductor dual-output Buck converter with fast transient response[J]. IEEE Transactions on Very Large Scale Integration (VLSI) System, 2015, 23(1): 107-117. doi: 10.1109/TVLSI.2014.2299873 WANG W, XU J P, WEI X J, et al. Peak inductor current and differential-mode voltage control of single-inductor dual-output Buck converters in continuous conduction mode[C]//IEEE International Conference on Power Electronic Motion Control. [S.l.]: IEEE, 2009: 495-499. WANG Y, XU J P, YIN G. Cross regulation suppression and stability analysis of capacitor current ripple controlled SIDO CCM Buck converter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 1770-1780. doi: 10.1109/TIE.2018.2838103