Mechanism of High-Speed Railway Interference on Power Cables of Adjacent Normal-Speed Railway
-
摘要: 高速铁路由于列车速度快、牵引功率大,且高速运行时持续取流,对与其邻近的普速铁路沿线敷设的电力电缆产生了明显的电磁干扰. 为此,通过对感性耦合和阻性耦合机理分析,研究高速铁路对电力电缆感应电压的干扰机理;运用CDEGS软件建立高速铁路对电力电缆电磁干扰仿真模型,总结电力电缆感应电压影响因素;基于计算结果对仿真模型进行验证. 结果表明:在邻近情况下,电力电缆感应电压与牵引负荷、电力电缆、土壤结构参数有关;其中,平行长度、负荷电流、土壤电阻率和短路电流对电力电缆感应电压有显著影响;高速铁路与普速铁路之间应根据电缆长度的不同设置合理的防护距离,且采用中点接地和单端接地方式能有效地降低电力电缆感应电流.Abstract: Due to high speed, large traction power and continuously receiving current in operation, high-speed railways generate obvious electromagnetic interference on the power cables of adjacent normal-speed railways. Based on the analysis of inductive coupling and resistive coupling mechanism, the interference from high-speed railways on the induced voltage of power cables was analyzed, and CDEGS software was used to establish the electromagnetic simulation model of high-speed railway interference to the power cables of adjacent normal-speed railways, and the factors affecting the induced voltage of power cables are summarized. The simulation model was verified on the basis of the calculation results. The results show that the induced voltage of power cables near high-speed railways is related to the traction load, parameters of power cable and soil structure. Of them, the parallel length, load current, soil resistivity and short-circuit current have significant influence on the induced voltage of power cables. The protection distance between high-speed railways and normal-speed railways should be set according to different cable lengths. Middle grounding and single-terminal grounding can effectively reduce the induced current of power cables.
-
表 1 导线模型电气参数
Table 1. Wire model electrical parameters
导线型号 电阻/
(Ω•km−1)标称截
面积/mm2计算截
面积/mm2CTMH-150 0.1852 150 151.00 JTMH-120 0.2420 120 116.99 LGJ-300/50 0.0964 铝 300,
钢 50铝 299.54,
钢 48.82LGJ-120/20 0.2496 铝 120,
钢 20铝 115.67,
钢 18.82TJ-95 0.2000 95 93.27 表 2 三芯电力电缆模型参数
Table 2. Three-core power cable model parameters
参数 缆芯 护套 铠装 内半径/mm 0 10.9 51.5 外半径/mm 5.00 11.05 53.50 相对电阻率 1.0 1.0 1.6 厚度/mm 5.9 2.8 2.8 电阻率/(Ω•m) 1014 1014 1014 相对介电常数 1 1 1 表 3 地电位比较值
Table 3. Ground potential comparison value
距泄流点距离/m 计算值/V 仿真值/V 误差/% 5 9.349 9.655 3.17 10 8.224 8.475 2.96 15 7.566 7.809 3.11 20 7.099 7.330 3.15 25 6.738 6.955 3.12 表 4 短路电流对电力电缆感应电流的影响
Table 4. Effect of short circuit current on induced current
短路电流/kA 感应电流/A 5 1.576 10 2.676 15 3.457 20 4.009 25 4.408 表 5 不同防护距离时电缆的感应电压
Table 5. Induced voltage at different protective distances V
防护距离/m 电缆长度/km 0.5 1.0 1.5 2.0 2.5 3.0 50 72.38 79.51 90.52 115.98 155.28 200.09 100 59.84 65.19 73.69 92.75 122.63 156.78 150 52.25 56.78 63.86 79.30 103.68 131.72 200 46.94 50.80 56.93 69.91 90.45 114.15 250 42.80 46.17 51.63 62.83 80.52 100.94 300 39.42 42.43 47.39 57.23 72.65 90.54 350 36.57 39.28 43.80 52.52 66.07 81.85 400 34.11 36.57 40.71 48.51 60.50 74.50 450 31.96 34.21 38.04 45.06 55.74 68.24 500 30.05 32.12 35.67 42.01 51.56 62.78 550 28.33 30.25 33.54 39.32 47.91 58.03 600 26.77 28.55 31.58 36.83 44.55 53.62 -
国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[N]. 人民日报, 2020-02-29(5). 曹建猷. 电气化铁道供电系统[M]. 北京: 中国铁道出版社, 1983. 李群湛, 贺建闽. 牵引供电系统分析[M]. 成都: 西南交通大学出版社, 2007. CARSON J R. Wave propagation in overhead wires with ground return[J]. Bell Labs Technical Journal, 1926, 5(4): 539-554. doi: 10.1002/j.1538-7305.1926.tb00122.x 高攸刚. 感应耦合和阻性耦合[M]. 北京: 人民邮电出版社, 1979. 李宝聚,周浩. 1 000 kV同塔双回线路感应电压和电流的计算分析[J]. 电网技术,2011,35(3): 14-19.LI Baoju, ZHOU Hao. Calculation and analysis on induced voltage and current of 1 000 kV transmission line adopting structure of double circuit on the same tower[J]. Power System Technology, 2011, 35(3): 14-19. 林莘,李学斌,徐建源. 特高压同塔双回线路感应电压、电流仿真分析[J]. 高电压技术,2010,36(9): 2193-2198.LIN Xin, LI Xuebin, XU Jianyuan. Simulation and analysis of induced voltage and current for UHV double circuit transmission lines on the same tower[J]. High Voltage Engineering, 2010, 36(9): 2193-2198. 潘俊文,罗日成,吴东. 500 kV同塔双回输电线路下平行排列油气管道上的感应电压和感应电流仿真分析[J]. 高压电器,2017,53(10): 209-214.PAN Junwen, LUO Richeng, WU Dong. Simulation Analysis for induced voltage and induced current in the oil & gas pipeline parallel under 500 kV AC double-circuit transmission lines on same tower[J]. High Voltage Apparatus, 2017, 53(10): 209-214. 朱军,吴广宁,曹晓斌,等. 非全线并行架设的交、直流共用输电走廊线路间电磁耦合计算分析[J]. 高电压技术,2014,40(6): 1724-1731.ZHU Jun, WU Guangning, CAO Xiaobin, et al. Electromagnetic coupling calculation and analysis of lines non-parallelly erected entirely in one common AC/DC transmission corridor[J]. High Voltage Engineering, 2014, 40(6): 1724-1731. LU T, ZHAO S, CUI X. Simulation of electromagnetic induction on DC transmission lines from parallel AC transmission lines[C]//International Symposium on Electromagnetic Compatibility. [S.l.]: IEEE, 2007: 114-117. 高攸纲,沈远茂,石丹. 交流电气化铁道对周围电气及电子系统的阻性耦合影响[J]. 邮电设计技术,2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013GAO Yougang, SHEN Yuanmao, SHI Dan. Resistive coupling effects of AC electric railway to surrounding electric and electronic system[J]. Designing Techniques of Posts and Telecommunications, 2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013 汤德宁. 交流牵引网对电力贯通线检修作业影响的研究[D]. 北京: 北京交通大学, 2018. 赵鑫. 电气化铁路对电力贯通线感应电特性研究[D]. 成都: 西南交通大学, 2018. 常媛媛. 高速铁路牵引供电系统对信号电缆电磁影响若干问题的研究[D]. 北京: 中国铁道科学研究院, 2011. 韦继肖. 电气化铁路对通信线路的电磁影响研究[D]. 北京: 北京交通大学, 2014. 徐迎辉. 客专牵引电流对信号电缆电磁影响研究[D]. 兰州: 兰州交通大学, 2013. 彭涛,陈剑云. AT牵引供电对电力电缆感应电压仿真分析[J]. 华东交通大学学报,2017,34(5): 113-119.PENG Tao, CHEN Jianyun. Simulation of AT traction power supply system for power cable induced voltage[J]. Journal of East China Jiaotong University, 2017, 34(5): 113-119. 魏巍. 含综合地线的牵引供电系统建模与仿真[D]. 成都: 西南交通大学, 2017. 朱久国. 交流电气化铁路对埋地油气管道电磁干扰特性研究[D]. 成都: 西南交通大学, 2018. 齐磊,崔翔,郭剑,曹玉杰. 特高压交流输电线路正常运行时对输油输气管道的感性耦合计算模型[J]. 中国电机工程学报,2010,30(21): 121-126.QI Lei, CUI Xiang, GUO Jian, et al. Inductive coupling modelling of normally operating UHV AC transmission line to adjacent oil/gas pipeline[J]. Proceedings of the CSEE, 2010, 30(21): 121-126. 牛晓民. 电力系统接地分析软件CDEGS简介[J]. 华北电力技术,2004(12): 29-31. doi: 10.3969/j.issn.1003-9171.2004.12.009NIU Xiaomin. Introduction of CDEGS[J]. North China Electric Power, 2004(12): 29-31. doi: 10.3969/j.issn.1003-9171.2004.12.009 全国建筑物电气装置标准化技术委员会(SAC/TC 205). 电流通过人体的效应: GB13870—2008[S]. 北京: 中国标准出版社, 2008 铁道第三勘察设计院集团有限公司. 铁路电力设计规范: TB 10008—2015[S]. 北京: 中国铁道出版社, 2016.