• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

聚丙烯纤维增强混凝土梁变形性能的试验研究

李福海 何肖云峰 吴昊南 姜怡林 王奕彬 胡丁涵

李福海, 何肖云峰, 吴昊南, 姜怡林, 王奕彬, 胡丁涵. 聚丙烯纤维增强混凝土梁变形性能的试验研究[J]. 西南交通大学学报, 2021, 56(4): 853-863. doi: 10.3969/j.issn.0258-2724.20190959
引用本文: 李福海, 何肖云峰, 吴昊南, 姜怡林, 王奕彬, 胡丁涵. 聚丙烯纤维增强混凝土梁变形性能的试验研究[J]. 西南交通大学学报, 2021, 56(4): 853-863. doi: 10.3969/j.issn.0258-2724.20190959
LI Fuhai, HE Xiaoyunfeng, WU Haonan, JIANG Yilin, WANG Yibin, HU Dinghan. Experimental Study on Deformation Behavior of Polypropylene Fiber Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 853-863. doi: 10.3969/j.issn.0258-2724.20190959
Citation: LI Fuhai, HE Xiaoyunfeng, WU Haonan, JIANG Yilin, WANG Yibin, HU Dinghan. Experimental Study on Deformation Behavior of Polypropylene Fiber Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 853-863. doi: 10.3969/j.issn.0258-2724.20190959

聚丙烯纤维增强混凝土梁变形性能的试验研究

doi: 10.3969/j.issn.0258-2724.20190959
基金项目: 四川省科研计划项目(2019YFG0001、2019YJ0219);教育部产学合作协同育人项目(201801098032)
详细信息
    作者简介:

    李福海(1979—),男,副教授,博士,研究方向为混凝土材料及其耐久性,E-mail:lifuhai2007@home.swjtu.edu.cn

  • 中图分类号: TU528.41

Experimental Study on Deformation Behavior of Polypropylene Fiber Reinforced Concrete Beams

  • 摘要: 为探究PP-ECC梁与RC梁变形发展规律的区别,通过逐级加载和循环加载两种加载制度对4根PP-ECC梁和4根RC梁进行抗弯试验;同时,基于有效惯性矩法推导出适用于短期荷载作用下PP-ECC梁的最大变形计算公式. 研究结果表明:逐级加载下,PP-ECC梁呈现出更为明显的塑性变形阶段,与RC梁相比,PP-ECC梁经过5次循环加载后的循环荷载变形曲线与原曲线拟合度较好;循环加载过程中,PP-ECC梁在基准荷载下的加载变形增长率和卸载变形增长率均小于相同配筋率的RC梁,呈现出更好的抗损伤变形能力和变形恢复能力;基于有效惯性矩法推导出的变形修正模型计算结果与试验结果拟合度较好,可应用于实际工程对PP-ECC梁在短期荷载作用下最大变形的计算.

     

  • 图 1  制作工艺流程

    Figure 1.  Production process

    图 2  试件尺寸及截面配筋

    Figure 2.  Specimen size and section reinforcement

    图 3  单轴拉伸试验

    Figure 3.  Uniaxial tensile tes

    图 4  应力-应变曲线

    Figure 4.  Stress vs strain curve

    图 5  试验加载装置

    Figure 5.  Test loading device

    图 6  标准化荷载-跨中变形

    Figure 6.  Standardized load vs midspan deformation

    图 7  循环荷载变形

    Figure 7.  Cyclic load deformation

    图 8  试件抗损伤变形

    Figure 8.  Damage resistance and deformation of specimens

    图 9  试件变形增长率

    Figure 9.  Specimen deformation growth rates

    图 10  试件平均变形增长率

    Figure 10.  Average deformation growth rates of specimes

    图 11  试件卸载变形

    Figure 11.  Specimen unloading deformation

    图 12  试件卸载变形增长率

    Figure 12.  Specimen unloading deformation growth rates

    图 13  平截面假定

    Figure 13.  Flat section assumption

    图 14  弹性阶段受力

    Figure 14.  Stress diagram of elastic stage

    图 15  带裂缝工作阶段受力

    Figure 15.  Stress diagram of working stage of specimen with cracks

    图 16  屈服阶段受力

    Figure 16.  Stress diagram of yield stage

    图 17  试验结果与计算结果

    Figure 17.  Test and calculation results

    表  1  试件参数

    Table  1.   Sample parameters

    编号加载
    方式
    材料纵筋直
    径/mm
    纵筋
    型号
    箍筋直
    径/mm
    箍筋
    型号
    LRA-1 LRA C30 8 HRB400 6 Q235
    LRA-2 C30 10 HRB400 6 Q235
    LRA-3 PP-ECC 8 HRB400 6 Q235
    LRA-4 PP-ECC 10 HRB400 6 Q235
    LRB-1 LRB C30 8 HRB400 6 Q235
    LRB-2 C30 10 HRB400 6 Q235
    LRB-3 PP-ECC 8 HRB400 6 Q235
    LRB-4 PP-ECC 10 HRB400 6 Q235
    下载: 导出CSV

    表  2  PP纤维性能指标

    Table  2.   PP fiber performance indexes

    参数长度/
    mm
    密度/
    (kg•m−3
    直径/
    μm
    抗拉强
    度/MPa
    弹性模
    量/GPa
    伸长
    率/%
    取值120.91 × 103204805.0015
    下载: 导出CSV

    表  3  PP-ECC性能指标

    Table  3.   PP-ECC performance indexes

    参数开裂抗拉强度/
    MPa
    开裂抗拉应变/
    %
    极限抗拉强度/
    MPa
    极限抗拉应变/
    %
    极限抗压强度/
    MPa
    极限抗压应变/
    %
    弹性
    模量E/GPa
    取值0.840.092.323.832.090.4113.35
    下载: 导出CSV

    表  4  C30混凝土性能指标

    Table  4.   C30 concrete performance indexes

    参数抗压强度/MPa抗压应变/%弹性模量/GPa
    取值33.470.0924.80
    下载: 导出CSV

    表  5  HRB400钢筋性能指标

    Table  5.   HRB400 steel performance indexes

    参数直径/
    mm
    截面面
    积/mm2
    屈服强
    度/MPa
    极限强
    度/MPa
    弹性模
    量/GPa
    取值850.24406576197.00
    1078.50411535203.00
    下载: 导出CSV

    表  6  卸载变形增长

    Table  6.   Unloading deformation growth

    编号平均卸载变形增长率/%卸载变形增长方差/mm
    02.5 kN02.5 kN
    LRB-1 195.59 106.13 5.530 1.090
    LRB-2 164.71 68.05 1.620 0.230
    LRB-3 59.58 34.78 0.086 0.012
    LRB-4 22.61 14.99 0.041 0.014
    下载: 导出CSV
  • 俞家欢. 超强韧性纤维混凝土的性能及应用[M]. 北京: 中国建筑工业出版社, 2012: 183-184.
    KANDA T, LI V C. New micro-mechanics design theory for pseudo strain hardening cementitious composite[J]. ASCE Journal of Engineering Mechanics, 1999, 125(4): 373-381. doi: 10.1061/(ASCE)0733-9399(1999)125:4(373)
    YAO Ding, YU Kequan, YU Jianggao, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study[J]. Construction and Building Materials, 2018, 177: 102-115. doi: 10.1016/j.conbuildmat.2018.05.122
    王玉清,刘潇,刘曙光,等. PVA-ECC徐变性能试验研究[J]. 建筑材料学报,2019,23(4): 823-830,845.

    WANG Yuqing, LIU Xiao, LIU Shuguang, et al. Experimental study on creep behaviors of PVA-ECC[J]. Journal of Building Materials, 2019, 23(4): 823-830,845.
    MENG D, LEE C K. Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams[J]. Engineering Structures, 2017, 151: 261-272. doi: 10.1016/j.engstruct.2017.08.036
    HOSSAIN K M A, ALAM S, ANWAR M S, et al. High performance composite slabs with profiled steel deck and engineered cementitious composites-strength and shear bond characteristics[J]. Construction and Building Materials, 2016, 125: 227-240. doi: 10.1016/j.conbuildmat.2016.08.021
    CAI Jingming, PAN Jinlong, ZHOU Xiangming, et al. Flexural behavior of basalt FRP reinforced ECC and concrete beams[J]. Construction and Building Materials, 2017, 142: 423-430. doi: 10.1016/j.conbuildmat.2017.03.087
    CHEN Y, YU J, LEUNG C K Y. Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion[J]. Construction and Building Materials, 2018, 167: 325-337. doi: 10.1016/j.conbuildmat.2018.02.009
    MOHAMMAD M R, LEE C K, SAFAT A, et al. Flexural behaviour of steel composite beams encased by engineered cementitious composites[J]. Journal of Constructional Steel Research, 2018, 143: 279-290. doi: 10.1016/j.jcsr.2018.01.004
    IEVA P, GREGOR F. Phenomenological interpretation of the shear behavior of reinforced engineered cementitious composite beams[J]. Cement and Concrete Composites, 2016, 73: 213-225. doi: 10.1016/j.cemconcomp.2016.07.018
    俞家欢,邹静辉. FRP筋增强PP-ECC梁滞回性能试验研究[J]. 土木工程学报,2012,45(增刊2): 84-88.

    YU Jiahuan, ZOU Jinghui. Experimental study on FRP reinforced PPECC beams under reverse cyclic loading[J]. China Civil Engineering Journal, 2012, 45(S2): 84-88.
    袁方,陈梦成,王文波. 往复荷载下钢筋增强ECC梁的抗剪性能研究[J]. 铁道学报,2018,40(8): 146-153. doi: 10.3969/j.issn.1001-8360.2018.08.019

    YUAN Fang, CHEN Mengcheng, WANG Wenbo. Study on shear behavior of steel reinforced ECC beams under reversed cyclic loading[J]. Journal of the China Railway Society, 2018, 40(8): 146-153. doi: 10.3969/j.issn.1001-8360.2018.08.019
    樊健生,施正捷. 钢-ECC组合梁负弯矩受弯性能试验研究[J]. 土木工程学报,2017,50(4): 64-72.

    FAN Jiansheng, SHI Zhengjie. Experimental research on negative bending behavior of steel-ECC composite beams[J]. China Civil Engineering Journal, 2017, 50(4): 64-72.
    WEN J G, ASHRAF F A, YU J M, et al. Flexural behaviors of ECC-concrete composite reinforced with steel bars[J]. Construction and Building Materials, 2018, 159: 175-188. doi: 10.1016/j.conbuildmat.2017.10.101
    QUDAH S, MAALEJ M. Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance[J]. Engineering Structure, 2014, 69: 235-245. doi: 10.1016/j.engstruct.2014.03.026
    ELGAWADY M A, DAWOOD H M. Analysis of segmental piers consisted of concrete filled FRP tubes[J]. Engineering Structure, 2012, 38: 142-152. doi: 10.1016/j.engstruct.2012.01.001
    李福海,胡丁涵,余泳江,等. PP-ECC梁抗弯性能试验研究[J]. 西南交通大学学报,2019,54(2): 272-281.

    LI Fuhai, HU Dinghan, YU Yongjiang, et al. Experimental study on flexural capacity of PP-ECC beam[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 272-281.
    贾毅,赵人达,占玉林,等. PP-ECC用于墩底塑性铰区域的抗震性能试验[J]. 中国公路学报,2019,32(7): 100-110.

    JIA Yi, ZHAO Renda, ZHAN Yulin, et al. Experimental investigation on seismic behavior of bridge piers with polypropylene-engineered cementitious composite in plastic hinge regions[J]. China Journal of Highway and Transport, 2019, 32(7): 100-110.
    周双. 纤维增强水泥基复合材料试验研究及其桥梁无缝化改造中的应用[D]. 成都: 西南交通大学, 2017.
    李碧雄,廖桥,章一萍,等. 超高强钢筋工程用水泥基复合材料[J]. 吉林大学学报(工学版),2019,49(4): 1153-1161.

    LI Bixiong, LIAO Qiao, Zhang Yiping, et al. Theoretical on flexural behavior of ultra high strength rebar reinforced engineered cementitious composites beam[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1153-1161.
    陈绪军. FRP片材加固钢筋混凝土梁挠度计算方法研究[J]. 铁道学报,2017,39(11): 103-107. doi: 10.3969/j.issn.1001-8360.2017.11.016

    CHEN Xujun. Study on deflection calculation method for reinforced concrete beams strengthened with FRP sheets[J]. Journal of the China Railway Society, 2017, 39(11): 103-107. doi: 10.3969/j.issn.1001-8360.2017.11.016
    周建民,陈硕,王晓锋,等. 高强钢筋混凝土梁短期变形计算方法研究[J]. 同济大学学报(自然科学版),2013,41(4): 503-509.

    ZHOU Jianmin, CHEN Shuo, WANG Xiaofeng, et al. Calculation method of short-term deformation of concrete beams with high strength steel bars[J]. Journal of Tongji University (Natural Science), 2013, 41(4): 503-509.
    American Concrete Institute. Building code requirements for structural concrete and commentary: ACI 318-11[S]. Detroit: ACI Committee 318, 2011.
    宁喜亮. 钢筋纤维自密实混凝土梁受弯承载力与裂缝研究[D]. 大连: 大连理工大学, 2015.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  523
  • HTML全文浏览量:  282
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2020-02-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回