• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于环剪试验的含钙质结核古土壤剪切特性

姜程程 范文 苑伟娜

姜程程, 范文, 苑伟娜. 基于环剪试验的含钙质结核古土壤剪切特性[J]. 西南交通大学学报, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951
引用本文: 姜程程, 范文, 苑伟娜. 基于环剪试验的含钙质结核古土壤剪切特性[J]. 西南交通大学学报, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951
JIANG Chengcheng, FAN Wen, YUAN Weina. Shear Properties of Paleosol Containing Calcareous ConcretionsBased on Ring Shear Tests[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951
Citation: JIANG Chengcheng, FAN Wen, YUAN Weina. Shear Properties of Paleosol Containing Calcareous ConcretionsBased on Ring Shear Tests[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951

基于环剪试验的含钙质结核古土壤剪切特性

doi: 10.3969/j.issn.0258-2724.20190951
基金项目: 国家自然科学基金(41630634);国家自然科学基金青年项目(41807238)
详细信息
    作者简介:

    姜程程(1991—),女,博士研究生,研究方向为地质灾害,E-mail:Irisjiang0603@163.com

    通讯作者:

    范文(1967—),男,教授,博士生导师,研究方向为地质工程、岩土工程,E-mail:fanwen@chd.edu.cn

  • 中图分类号: TU411

Shear Properties of Paleosol Containing Calcareous ConcretionsBased on Ring Shear Tests

  • 摘要: 含钙质结核古土壤在黄土滑坡的剪切带中广泛分布,影响滑坡的剪切特性. 通过固结排水环剪试验,改变轴应力大小,研究不同钙质结核含量下古土壤的剪切力学特性;基于对剪切破坏面的宏观结构分析,总结并提出剪切破坏面的“一”型和“U”型两种破坏形态及平稳、过渡、波动3种破坏模式. 研究结果表明:在低轴应力下,应力-位移曲线均为软化型,具有明显的残余强度特性,随钙质结核含量增大,应变软化特性变弱;在高轴应力下,则表现为硬化型;钙质结核颗粒能增大土的剪切强度、摩擦角,减小黏聚力;剪切带厚度与钙质结核含量正相关,与 D50 负相关;在大位移剪切作用下,颗粒会发生破碎,通过对剪切前后粒径分析,确定了钙质结核主要破碎区间为3~5 mm,破碎率为19.5%~55.5%;古土壤由 0.01~0.05 mm颗粒破碎为 0.002~0.010 mm的较小颗粒.

     

  • 图 1  SRS-150 环剪仪

    Figure 1.  Ring shear apparatus of type SRS-150

    图 2  含钙质结核古土壤

    Figure 2.  Paleosol containing calcareous concretions

    图 3  $\sigma $ = 90 kPa时试样的环剪试验曲线

    Figure 3.  Ring shear test curve of sample at $\sigma $ = 90 kPa

    图 4  $\sigma $ = 270 kPa时试样的环剪试验曲线

    Figure 4.  Ring shear test curve of sample at $\sigma $ = 270 kPa

    图 5  $\sigma $ = 90 kPa时试样的$ {R}_{{\rm{s}}} $$ {R}_{{\rm{t}}} $拟合

    Figure 5.  Fitting curves of residual shear strength Rs and peak strength Rt versus calcareous concretion content at $\sigma $ = 90 kPa

    图 6  试样的环剪试验曲线

    Figure 6.  Ring shear test curve

    图 7  试样黏聚力与摩擦角随剪切位移的变化

    Figure 7.  Change of cohesion and internal friction angle with shear displacement of sample

    图 8  试样纵剖面剪切破坏形态

    Figure 8.  Shear failure forms of longitudinal profile

    图 9  $\sigma $ = 90 kPa 时剪切完成后的横剖面破坏形态

    Figure 9.  Typical failure patterns after shearing at $\sigma $ = 90 kPa

    图 10  剪切带厚度随轴应力的变化

    Figure 10.  Variation of shear band thickness with normal stress

    图 11  剪切前后古土壤颗粒级配

    Figure 11.  Gradation diagram of paleosol before and after shearing

    表  1  土样物性参数表

    Table  1.   Basic physical properties of soil specimen

    参数含水率/%密度/(g•cm−3干密度/(g•cm−3液限 w塑限 wp塑性指数 Ip土粒比重 Gs
    取值21.271.671.4428.119.38.82.71
    下载: 导出CSV

    表  2  S2古土壤粒径分布

    Table  2.   Particle size distribution of S2 paleosol %

    粒组黏粒组/mm粉粒组/mm砂粒组/mm
    细(胶粒)(< 0.002)粗[0.002~0.005)细[0.005~0.010)粗[0.010~0.050)级细[0.050~0.075)细[0.075~0.100]
    取值18.789.8318.2246.783.860.36
    下载: 导出CSV

    表  3  试验方案与分组表

    Table  3.   Test plan and group table

    试验编号轴应力/kPaC/%
    1-1、1-2、1-3900、4、8、12
    2-1、2-2、2-3180
    3-1、3-2、3-3270
    下载: 导出CSV

    表  4  $\sigma = 90 \;{\rm{kPa}}$时试样的强度与剪切位移的关系

    Table  4.   Relationship between strength and shear displacement at $\sigma = 90 \;{\rm{kPa}} $

    C/%Rs/kPaRs 差/kPaRt 所需
    位移/mm
    Rs 所需
    位移/mm
    072.57.0~7.216.1~17.121.4~21.7
    480.76.2~6.617.6~18.123.0~23.6
    891.95.1~5.918.8~20.136.8~37.9
    194.52.2~1.821.3~21.941.9~42.1
    下载: 导出CSV

    表  5  不同钙质结核含量下试样的软化系数

    Table  5.   Softness factor of samples tested with different contents of calcareous concretions

    C/%Rc/kPaRs/kPa软化系数
    079.865.50.180
    487.180.70.073
    897.191.90.053
    1298.394.50.039
    下载: 导出CSV

    表  6  抗剪强度指标

    Table  6.   Shear strength indexes

    参数C /%
    04812
    φ/(°)21.2323.6724.2226.80
    c/kPa14.5014.5114.4314.28
    下载: 导出CSV

    表  7  样品的矿物成分

    Table  7.   Mineral proportions of samples %

    矿物成分古土壤钙质结核
    石英+长石 71.0 27.9
    方解石 13.2 65.6
    黏土矿物 13.5 6.5
    其它 2.3 0
    下载: 导出CSV

    表  8  剪切前后钙质结核粒径分布

    Table  8.   Size distribution of particles before and after shearing of samples %

    状态轴应
    力/kPa
    粒组(粗)/mm砾粒组(细)/mm
    < 1[1~2)[2~3)[3~4)[4~5]
    剪切前05.2018.5041.3415.1519.81
    905.8018.4040.7614.9020.14
    1805.6018.7041.2616.7917.65
    2705.5018.4041.7815.9918.33
    剪切后05.8018.4041.6715.7418.39
    906.7019.8042.8316.9013.77
    1807.9023.7043.2613.7911.35
    2708.5029.4047.7810.363.96
    下载: 导出CSV
  • 刘祖典, 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997: 1-4.
    LI Y R. A review of shear and tensile strengths of the Malan Loess in China[J]. Engineering Geology, 2018, 236: 4-10. doi: 10.1016/j.enggeo.2017.02.023
    孙建中. 黄土学(上篇)[M]. 香港: 香港考古学会出版社, 2005: 206-208.
    黄宏翔,陈育民,王建平,等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学,2018,39(6): 2082-2088.

    HUANG Hongxiang, CHEN Yumin, WANG Jianping, et al. Ring shear tests on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088.
    张彦君,年廷凯,王亮,等. 岩质边坡物理模型试验相似材料研究[J]. 西南交通大学学报,2019,54(1): 59-64,76.

    ZHANG Yanjun, NIAN Tingkai, WANG Liang, et al. Research on similar materials for physical model tests of rock slopes[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 59-64,76.
    崔圣华,裴向军,黄润秋,等. 大光包滑坡不连续地质特征及其工程地质意义[J]. 西南交通大学学报,2019,54(1): 65-76.

    CUI Shenghua, PEI Xiangjun, HUANG Runqiu, et al. Discontinuities and engineering geological significances of strong earthquake-induced daguangbao landslide[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 65-76.
    洪勇,孙涛,栾茂田,等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学,2009,30(3): 628-634. doi: 10.3969/j.issn.1000-7598.2009.03.037

    HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus:an overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628-634. doi: 10.3969/j.issn.1000-7598.2009.03.037
    丁树云,毕庆涛,蔡正银,等. 环剪仪的试验方法研究[J]. 岩土工程学报,2013,35(增刊2): 197-201.

    DING Shuyun, BI Qingtao, CAI Zhengyin, et al. Test procedures for ring shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 197-201.
    HOYOS L R, VELOSA C L, PUPPALA A J. Residual shear strength of unsaturated soils via suction-controlled ring shear testing[J]. Engineering Geology, 2014, 172(5): 1-11. doi: 10.1016/j.enggeo.2014.01.001
    YUAN W N, FAN W, JIANG C C, et al. Experimental study on the shear behavior of loess and paleosol based on ring shear tests[J]. Engineering Geology, 2019, 250: 11-20. doi: 10.1016/j.enggeo.2019.01.007
    MA C, ZHAN H B, ZHANG T, et al. Investigation on shear behavior of soft interlayers by ring shear tests[J]. Engineering Geology, 2019, 254: 34-42. doi: 10.1016/j.enggeo.2019.04.002
    滕志宏,刘荣谟,陈苓,等. 中国黄土地层中的钙质结核研究[J]. 科学通报,1990,35(13): 1008-1011. doi: 10.1360/csb1990-35-13-1008

    TENG Zhihong, LIU Rongmo, CHEN Ling, et al. Study on calcareous nodules in loess plateau of China[J]. Chinese Science Bulletin, 1990, 35(13): 1008-1011. doi: 10.1360/csb1990-35-13-1008
    曹亚娟. 安徽淮北平原钙质结核土的分布及成因研究[D]. 合肥: 合肥工业大学, 2009.
    蓝天鹏,吴道祥,杨远杰,等. 钙质结核土及其大型直剪试验研究[J]. 合肥工业大学学报(自然科学版),2012,35(2): 257-261.

    LAN Tianpeng, WU Daoxiang, YANG Yuanjie, et al. Research on cohesive soil containing calcareous nodule and its large direct shear test[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(2): 257-261.
    胡雪婷. 钙质结核土细观结构要素与抗剪强度关系的研究[D]. 合肥: 合肥工业大学, 2017.
    LIU X Y, LIU E L, ZHANG D, et al. Study on effect of coarse-grained content on the mechanical properties of frozen mixed soils[J]. Cold Regions Science and Technology, 2019, 158: 237-251. doi: 10.1016/j.coldregions.2018.09.001
    屈智炯, 刘恩龙. 土的塑性力学[M]. 北京: 科学出版社, 2009: 57-59.
    崔凯,苏磊. 粗颗粒含量对川西混合土抗剪强度的影响[J]. 西南交通大学学报,2019,54(4): 778-785.

    CUI Kai, SU Lei. Effect of coarse grain content on shear strength of mixed soil in Western Sichuan[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 778-785.
    王炜. 重塑黄土残余强度的环剪试验研究[D]. 杨凌: 西北农林科技大学, 2014.
    LI Y R, AYDIN A. Shear zone structures and stress fluctuations in large ring shear tests[J]. Engineering Geology, 2013, 167: 6-13. doi: 10.1016/j.enggeo.2013.10.001
    SKEMPTON A W. Residual strength of clays in landslides,folded strata and the laboratory[J]. Geotechnique, 1985, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3
    SADREKARIMI A, OLSON S M. Shear band formation observed in ring shear tests on sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 366-375. doi: 10.1061/(ASCE)GT.1943-5606.0000220
    何建乔,魏厚振,孟庆山,等. 大位移剪切下钙质砂破碎演化特性[J]. 岩土力学,2018,39(1): 165-172.

    HE Jianqiao, WEI Houzhen, MENG Qingshan, et al. Evolution of particle breakage of calcareous sand under large displacement shearing[J]. Rock and Soil Mechanics, 2018, 39(1): 165-172.
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  267
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2020-01-11
  • 网络出版日期:  2020-03-12
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回