Derailment Mechanism and Influence Factors on Number 6 Symmetric Switches
-
摘要: 编组场内使用的主型6号对称道岔发生多起脱轨事故,其安全问题一致未得到有效解决. 为探索脱轨原因、提出合理应对措施,首先基于准静态轮轨接触理论分析道岔区轮轨接触特征,进而建立车辆-道岔耦合动力学模型,以车轮动态抬升量为评价指标分析车辆、轨道、道岔结构参数对爬轨性能的影响特性. 结果表明:轮缘贴靠尖轨尖端时接触角仅为53°,脱轨系数临界值不足0.73,是导致6号对称道岔脱轨风险较高的根本原因;尖轨顶宽5 mm处降低值由14 mm减至10 mm、转辙角由1.1° 降至0.9°、无轨撑扣件的垫板刚度由150 kN/mm降至50 kN/mm等措施,均可使得车轮抬升量保持在3 mm以下;道岔前端设置长度不小于3 m直线段、保持良好的轴箱定位状态、尖轨侧面摩擦系数保持在0.3以下也有利于防止脱轨事故发生.Abstract: Plenty of derailments in number 6 symmetric switches occur in recent years, the derailment issue has not yet been addressed successfully. In order to discover causes and put forward reasonable measurement, the wheel/rail contact feature was analyzed based on the quasi-static theory. The coupling dynamic model of train & track was built. Taking wheel uplifted height as evaluation index, the influences of vehicle and track parameters on derailment performances were analyzed. The results show that the contact angle is only 53° when the flange touches switch rail toe, the derailment coefficient criteria is less than 0.73, which is root cause of high derailment risk.The wheel lift can be kept below 3 mm by reducing the value from 14 mm to 10 mm at the top width of 5 mm, reducing the switch angle from 1.1° to 0.9°, and reducing the stiffness of the backing plate of trackless fastener from 150 kN/mm to 50 kN/mm. It is also beneficial to prevent derailment accidents by setting a straight section with a length of not less than 3 m at the front end of the turnout, keeping a good positioning state of the axle box and keeping the side friction coefficient of the sharp rail below 0.3.
-
Key words:
- track switches /
- derailment /
- switch rail machined depth /
- entry angle /
- track stiffness
-
表 1 尖轨降低值
Table 1. Cases of switch rail machined depth
顶宽/
mm距尖端
距离/m降低值/mm 方案Ⅰ 方案Ⅱ 方案Ⅲ 方案Ⅳ 方案Ⅴ 0 0 −23.0 −22.0 −21.0 −19.0 −17.0 5 0.08 −14.0 −12.0 −10.0 −8.0 −6.0 20 0.48 −3.0 −2.0 −1.0 −0.5 0 50 1.28 0 0 0 0 0 -
中国铁道科学研究院铁道建筑研究所. 道岔型号简化统型研究报告[R]. 北京: 中国铁道科学研究院铁道建筑研究所, 2015. 费维周. 50 kg/m钢轨6号对称道岔脱轨原因分析及优化改进研究[D]. 成都: 西南交通大学, 2012. 李章凤. 驼峰下1/6对称混凝土枕道岔脱线事故分析与防治[J]. 铁道建筑,2013(6): 147-149. 王福天. 车辆系统动力学[M]. 北京: 中国铁道出版社, 1994: 15. 横濑景司. 一軸車輪の脫線[J]. 鐵道研究所報告,1965,504(11): 1-20. YOKOSE K. Experiment of hunting derailment with a one-fifth model wheelset[J]. Quarterly Report of RtRi, 1970, 11(4): 228-231. 陈果,翟婉明,左洪福. 车辆脱轨安全限值的调整与改进建议[J]. 中国机械工程,2002,13(8): 646-649. doi: 10.3321/j.issn:1004-132X.2002.08.006CHEN Guo, ZHAI Wanming, ZUO Hongfu. Suggestions of adjustment and improvement on vehicle derailment safety limit value[J]. China Mechanical Engineering, 2002,13(8): 646-649. doi: 10.3321/j.issn:1004-132X.2002.08.006 WU H. Investigation of wheel/rails interaction on wheel flange climb derailment and wheel/rail profile compatibility[D]. Chicago: Illinois institute of technology, 2000. ELKINS J, WU H. Angle of attack and distance criteria for flange climb derailment[J]. Vehicle System Dynamics, 2000, 33(2): 293-305. 关庆华,曾京,陈哲明. 考虑冲角影响的改进脱轨准则[J]. 中国铁道科学,2009,30(3): 74-80.GUAN Qinghua, ZENG Jing, CHEN Zheming. Improving the derailment criteria by taking the impact of attack angle into account[J]. China Railway Science, 2009, 30(3): 74-80. 王健,马晓川,马道林,等. 准静态条件下三维脱轨系数临界值简化计算方法[J]. 交通运输工程学报,2017,17(5): 71-80.WANG Jian, MA Xiaochuan, MA Daolin, et al. Simplified calculation method of critical value of 3D derailment coefficient under quasi-static condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 71-80. 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2016: 44-47. 王树国,司道林,王猛,等. 高速铁路道岔尖轨降低值对行车平稳性的影响机理研究[J]. 中国铁道科学,2014,35(3): 28-33.WANG Shuguo, SI Daolin, WANG Meng, et al. Influence of value reduced for switch rail of high-speed railway on riding quality[J]. China Railway Science, 2014, 35(3): 28-33.