• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑牵引所多运行状态的城轨交直流供电计算

刘炜 张扬鑫 张戬 李鲲鹏 李群湛

刘炜, 张扬鑫, 张戬, 李鲲鹏, 李群湛. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
引用本文: 刘炜, 张扬鑫, 张戬, 李鲲鹏, 李群湛. 考虑牵引所多运行状态的城轨交直流供电计算[J]. 西南交通大学学报, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
LIU Wei, ZHANG Yangxin, ZHANG Jian, LI Kunpeng, LI Qunzhan. Calculation of Urban Rail AC/DC Power Supply with Traction Substation in Multi-Operation Modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854
Citation: LIU Wei, ZHANG Yangxin, ZHANG Jian, LI Kunpeng, LI Qunzhan. Calculation of Urban Rail AC/DC Power Supply with Traction Substation in Multi-Operation Modes[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1163-1170. doi: 10.3969/j.issn.0258-2724.20190854

考虑牵引所多运行状态的城轨交直流供电计算

doi: 10.3969/j.issn.0258-2724.20190854
基金项目: 国家自然科学基金青年科学基金(51607148)
详细信息
    作者简介:

    刘炜(1982—),男,副教授,研究方向为城市轨道牵引供电系统理论与仿真、再生制动能量利用、杂散电流,E-mail:liuwei_8208@swjtu.cn

  • 中图分类号: TM922.3

Calculation of Urban Rail AC/DC Power Supply with Traction Substation in Multi-Operation Modes

  • 摘要: 城市轨道牵引变电所存在多种运行状态:整流状态、整流机组关断状态、逆变回馈装置恒定电压运行状态、逆变回馈装置最大功率运行状态. 针对潮流计算中牵引变电所状态的不确定而影响计算收敛性的问题,提出一种考虑牵引变电所多运行状态的城轨交直流供电计算算法. 该算法对逆变回馈装置和车载制动电阻建模,根据迭代过程中牵引变电所网压、电流,采用滞环比较策略确定牵引变电所状态,通过交直流交替迭代方法求解潮流. 对某地铁工程进行仿真分析和实测验证,结果表明:仿真与实测的牵引变电所负荷过程曲线Pearson相关系数为0.76~0.92;逆变回馈装置节能率的仿真结果与实测误差不超过1.7%;在全线整流机组空载电压较高的场合,当逆变回馈装置的启动电压设置在1750 V以上时,消耗在车载制动电阻上的能量显著增大.

     

  • 图 1  牵引变电所工作特性曲线示意

    Figure 1.  Schematic diagram of working characteristic curve of traction substations

    图 2  逆变回馈装置原理

    Figure 2.  Inverting feedback device schematic

    图 3  牵引变电所状态确定方法

    Figure 3.  Determination method of traction substation state

    图 4  某地铁工程供电系统

    Figure 4.  Power supply system of some subway project

    图 5  某迭代时刻下两种状态确定策略的收敛情况

    Figure 5.  Convergence of two state-determination strategies at certain iterative time

    图 6  t = 483 s牵引网网压

    Figure 6.  Traction net pressure at t = 483 s

    图 7  t = 483 s牵引所输出功率

    Figure 7.  Traction output power at t = 483 s

    图 8  上行位置-取流曲线

    Figure 8.  Upstream position-flow curve

    图 9  上行位置-速度曲线

    Figure 9.  Upstream position-speed curve

    图 10  牵引所监测点位置

    Figure 10.  Monitoring point location for traction station

    图 11  逆变回馈装置不同启动电压下牵引所9实测与仿真负荷曲线比较

    Figure 11.  Comparison of actual and simulated load curves of traction station 9 under different starting voltages of inverting feedback device

    图 12  车载电阻能耗占列车再生制动能量比例

    Figure 12.  Proportion of energy consumption of vehicle resistance to regenerative braking energy

    表  1  某地铁工程牵引所位置分布

    Table  1.   Position distribution of traction station in subway project

    牵引所编号位置/km牵引所编号位置/km
    10.243613.900
    22.456715.995
    34.568820.235
    47.804923.322
    510.6701025.650
    下载: 导出CSV

    表  2  仿真主要参数设置

    Table  2.   Main parameters in simulation

    参数数值
    主变压器容量/(MV•A)2 × 25
    整流机组额定功率/kW2 × 2500
    车载制动电阻启动电压/V1790
    降压所负载率0.25
    接触网电阻/(Ω•(km)−1)0.0172
    钢轨纵向电阻/(Ω•(km)−1)0.02
    钢轨对地过渡电阻/(Ω•km)15
    下载: 导出CSV

    表  3  系统列车功率分布

    Table  3.   System train power distribution

    上行列车下行列车
    位置/km功率/kW位置/km功率/kW
    4.55357.0004.958−1432.606
    13.078547.80013.91632.550
    23.190−924.88523.508−1833.192
    下载: 导出CSV

    表  4  牵引所9负荷过程的仿真与实测比较

    Table  4.   Comparison of simulation and actual load process in traction station 9

    逆变回馈装置启动电压/V每小时牵引能
    耗/(kW•h)
    每小时反馈能
    量/(kW•h)
    整流机组工作电流峰值/A逆变回馈装置工作电流峰值/A占空比/%节能率/%
    1720 实测 461.6 117.2 1571.7 1191.7 18.2 25.4
    仿真 439.4 110.8 1670.3 944.0 22.8 25.2
    1750 实测 577.7 78.3 1753.8 652.0 14.8 13.6
    仿真 604.4 71.9 1693.8 813.1 18.2 11.9
    1770 实测 683.3 23.1 1832.7 209.6 10.8 3.4
    仿真 678.7 28.8 1701.2 541.3 11.4 4.2
    下载: 导出CSV
  • 魏文婧,胡海涛,王科,等. 基于铁路功率调节器的高速铁路牵引供电系统储能方案及控制策略[J]. 电工技术学报,2019,34(6): 1290-1299.

    WEI Wenjing, HU Haitao, WANG Ke, et al. Energy storage scheme and control strategies of high-speed railway based on railway power conditioner[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1290-1299.
    刘学军,于松伟,刘学. 轨道交通牵引供电仿真模型与算法的研究[J]. 计算机仿真,2004,21(12): 213-218.

    LIU Xuejun, YU Songwei, LIU Xue. Model and algorithm for traction power system simulation of urban rail-line[J]. Computer Simulation, 2004, 21(12): 213-218.
    刘炜,李群湛,唐兵,等. 基于蒙特卡洛模拟的城市轨道概率潮流分析[J]. 西南交通大学学报,2010,45(4): 561-567.

    LIU Wei, LI Qunzhan, TANG Bing, et al. Probabilistic load flow for urban rail traction power supply based on Monte Carlo simulation[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 561-567.
    PABLO A. DC railway simulation including controllable power electronic and energy storage devices[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5319-5329. doi: 10.1109/TPWRS.2018.2801023
    胡海涛,王江峰,何正友,等. 地铁牵引供电系统交-直流潮流算法研究[J]. 铁道学报,2012,34(11): 22-28.

    HU Haitao, WANG Jiangfeng, HE Zhengyou, et al. Study on power flow algorithm for metro traction supply system[J]. Journal of the China Railway Society, 2012, 34(11): 22-28.
    TZENG Y S, WU Ruannan, CHEN Nanming, et al. Electric network solutions of DC transit systems with inverting substations[J]. IEEE Transactions on Vehicular Technology, 1998, 47(4): 1405-1412. doi: 10.1109/25.728537
    TYLAVSKY D J. The Newton raphson load flow applied to AC/DC systems with commutation impedance[J]. IEEE Transactions on Industry Applications, 1983, IA-19(6): 940-948. doi: 10.1109/TIA.1983.4504318
    BEERTEN J, COLE S, BELMANS R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. doi: 10.1109/TPWRS.2011.2177867
    徐殿国,刘瑜超,武健. 多端直流输电系统控制研究综述[J]. 电工技术学报,2015,30(17): 1-12.

    XU Dianguo, LIU Yuchao, WU Jian. Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12.
    王家融,艾欣,王坤宇,等. 基于增广雅可比矩阵的交直流解耦潮流新算法[J]. 电工技术学报,2018,33(6): 1382-1389.

    WANG Jiarong, AI Xin, WANG Kunyu, et al. A Novel AC-DC decoupled power flow calculation method based on the augmented Jacobian matrix[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1382-1389.
    刘志刚,郝峰杰,陈杰,等. 城轨牵引供电系统车-地配合参数优化方法[J]. 北京交通大学学报,2019,43(1): 79-87.

    LIU Zhigang, HAO Fengjie, CHEN Jie, et al. Optimization method of train-ground coordination parameters for urban traction power supply system[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 79-87.
    刘斌. 城市轨道交通供电系统中压能馈装置应用分析[J]. 电气技术,2016,35(3): 148-151.

    LIU Bin. Analysis of application of medium voltage power feeder in urban rail transit power supply system[J]. Electrical Engineering, 2016, 35(3): 148-151.
    刘炜,李群湛,陈民武. 城市轨道交通交直流统一的牵引供电计算[J]. 电力系统保护与控制,2010,38(8): 128-133.

    LIU Wei, LI Qunzhan, CHEN Minwu. Study of unified AC/DC power flow in DC traction power supply system[J]. Power System Protection and Control, 2010, 38(8): 128-133.
    VAHEDI H, LABBE P A, AI-HADDAD K. Balancing three-level neutral point clamped inverter DC bus using closed-loop space vector modulation:Real-time implementation and investigation[J]. IEEE Transactions on Power Electronics, 2016, 9(10): 2076-2084. doi: 10.1049/iet-pel.2015.0226
    任敬国,赵建国,于大洋,等. VSC-HVDC输电系统模式切换控制策略[J]. 电力系统自动化,2012,36(6): 69-73.

    REN Jingguo, ZHAO Jianguo, YU Dayang, et al. Mode switching control strategy for VSC-HVDC transmission system[J]. Automation of Electric Power Systems, 2012, 36(6): 69-73.
    邓旗,张英敏,李志晗. 不同调度模式下VSC-MTDC系统的协调控制策略[J]. 电力建设,2017,38(8): 67-72.

    DENG Qi, ZANG Yingmin, LI Zhihan. Coordinated control strategy of VSC-MTDC system under different power dispatching modes[J]. Electric Power Construction, 2017, 38(8): 67-72.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  386
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-11-25
  • 网络出版日期:  2019-12-11
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回