Segmentation of Small-Field-of-Viewstar Images Based on Kittler Minimum Error Algorithm
-
摘要: 小视场星图易受光照不均和噪声影响,常用阈值分割算法存在处理效果不佳或效率较低的不足. 针对星图灰度的高斯分布特征,基于贝叶斯最小误差理论,提出利用Kittler最小误差分割算法处理小视场星图. 以视频测量机器人为测量平台,以 "优度法"、区域一致性、区域对比度和时间复杂度为评价指标,对比了常用的阈值分割算法和一维最大熵法,验证了Kittler算法在确保星图良好分割的同时,星图处理效率可以提高70%左右. 基于半仿真星图和真实星图的室内试验表明,Kittler算法可以准确提取星点质心坐标,水平和垂直方向均方根误差分别为0.025像素和0.019像素;采用该算法的野外天文定位实测表明,经纬度内符合平均精度分别优于0.015 s和0.22″,外符合精度分别优于0.025 s和0.35″,可以满足一等天文测量的精度要求.
-
关键词:
- 天文测量 /
- 高斯分布 /
- 图像分割 /
- Kittler最小误差法 /
- 小视场星图
Abstract: Compared with conventional images, small-field-of-view star images are more susceptible to the impacts of uneven illumination and measurement noises. Meanwhile, the traditional threshold segmentation algorithm has poor processing effect or efficiency. In terms of the Gaussian distribution of star image gray, the Kittler minimum error segmentation algorithm was used to process star images on the basis of Bayesian minimum error theory. By the use of the video measuring robot, several commonly-used threshold segmentation algorithms and one-dimensional maximum entropy algorithm are compared and analyzed in terms of goodness methods, regional consistency, regional contrast ratio and time complexity. It is indicated that the Kittler minimum error segmentation algorithm can achieve a satisfied segmentation of the small-field-of-view star images, and improves astronomical data processing efficiency significantly withthe average computation timereduced by about 70%. Laboratory experiments for semi-simulation star map and real star mapshow that the proposed algorithm can extract star points and obtain centroid coordinates accurately,whose horizontal and vertical root mean square errors are 0.025 and 0.019 pixels, respectively. Furthermore, extensive field experiments show that the astronomical longitude and latitude calculated by the proposed algorithm can meet first-class astronomical survey accuracy requirements, whose average internal accordant accuracy is better than 0.015 s and 0.22″ respectively, and external accordant accuracy is better than 0.025 s and 0.35″ respectively. -
表 1 星图阈值分割算法效果评价
Table 1. Resultevaluation of star image threshold segmentation algorithms
项目 局部阈值法 全局阈值法 Bernsen算法 Niblack算法 迭代法 Otsu算法 一维最大熵 Kittler算法 区域一致性 0.9969 0.9979 0.9981 0.9983 1.0000 1.0000 区域对比度 0.0452 0.2133 0.2199 0.2175 0.3494 0.3688 时间复杂度 $O({n^2})$ $O({n^2})$ $O(n)$ $O(n)$ $O(n\log \;n)$ $O(n)$ 处理时间/s 22.394 770.592 17.052 19.385 77.037 17.428 表 2 星点提取精度误差表
Table 2. Errors of star extraction accuracy
图号 一维最大熵法 Kittler算法 $\Delta x$ $\Delta y$ x y x y 1 1266.588 992.759 1266.453 992.682 0.136 0.077 2 1259.350 964.614 1259.418 964.593 −0.068 0.021 3 1186.383 1005.017 1186.308 1005.155 0.075 −0.138 4 1258.316 793.991 1258.277 793.930 0.038 0.061 表 3 野外天文测量精度指标
Table 3. Accuracy index of astronomical survey
经纬度 一等 二等 三等 纬度/(") 0.30 0.50 1.00 经度/s 0.02 0.04 0.08 表 4 内符合精度
Table 4. Internal accordant accuracy
经度 纬度 项目 值/s 项目 值/(″) 最大值 ±0.017 最大值 ±0.26 最小值 ±0.010 最小值 ±0.16 平均值 ±0.012 平均值 ±0.20 表 5 外符合精度
Table 5. External accordant accuracy
经度 纬度 项目 值/s 项目 值/(″) 最大差值 0.038 最大差值 0.52 最小差值 0.001 最小差值 0.02 RMSE 0.023 RMSE 0.33 表 6 野外实测结果
Table 6. Fieldtest results
测站号 时段号 经度/s 纬度/(″) 经度中误差/s 经度真误差/s 纬度中误差/(″) 经度真误差/(″) A 1 **.4906 **.7465 0.014 0.038 0.170 0.087 2 **.4797 **.6368 0.011 0.027 0.185 −0.023 B 1 **.6291 **.6844 0.010 −0.025 0.215 0.464 2 **.6438 **.3932 0.015 −0.011 0.159 0.173 注:**表示坐标的整数部分. -
张捍卫,许厚泽,王爱生. 天文经纬度和天文方位角测定的基本原理[J]. 测绘科学,2006,31(4): 157-160. doi: 10.3771/j.issn.1009-2307.2006.04.057ZHANG Hanwei, XU houze, WANG Aisheng. The basic principle of measuring astronomical longitude and latitude and astronomical azimuth[J]. Science of Surveying and Mapping, 2006, 31(4): 157-160. doi: 10.3771/j.issn.1009-2307.2006.04.057 张超,郑勇,夏治国. 天文测量中电子经纬仪的应用[J]. 信息工程大学学报,2003,4(3): 93-96. doi: 10.3969/j.issn.1671-0673.2003.03.026ZHANG Chao, ZHENG Yong, XIA Zhiguo. Applicaion of electronic theodolite (T3000/T200s) to astronomical surveying[J]. Journal of Information Engineering University, 2003, 4(3): 93-96. doi: 10.3969/j.issn.1671-0673.2003.03.026 时春霖, 张超, 袁晓波, 等. 天文大地测量的发展现状和展望[J]. 测绘工程, 2019, 28(2): 37-44.SHI Chunlin, ZHANG Chao, YUAN Xiaobo, The present situation and prospect of astronomical geodetic measurement[J]. Engineering of Surveying and Mapping, 2019, 28(2): 37-44. 郭敏,张红英. CCD数字摄影在天文定位测量中的应用探讨[J]. 测绘技术装备,2005,7(1): 28-29.GUO Min, ZHANG Hongying. Discussion on the application of CCD digital photography in astronomical positioning[J]. Survey Geomaties Technology and Equipment, 2005, 7(1): 28-29. 王博,田立丽,王政,等. 数字化天顶望远镜观测图像及数据处理[J]. 科学通报,2014,59(12): 1100-1107.WANG Bo, TIAN Lili, WANG Zheng, et al. Observation image and data processing of digital zenith telescope[J]. Chinese Science Bulletin, 2014, 59(12): 1100-1107. 翟广卿,艾贵斌. 数字天顶摄影天文定位测量的工程实现[J]. 测绘科学技术学报,2014,31(3): 232-235. doi: 10.3969/j.issn.1673-6338.2014.03.003ZHAI Guangqing, AI Guibin. Digital zenith camera astronomical positioning measurement of project implementation[J]. Journal of Geomatics Science and Technology, 2014, 31(3): 232-235. doi: 10.3969/j.issn.1673-6338.2014.03.003 时春霖,叶凯,张超,等. 视频测量机器人在野外天文测量中的应用[J]. 测绘科学技术学报,2018,35(2): 46-51.SHI Chunlin, YE Kai, ZHANG Chao. Application of video measuring robot in field astronomical survey[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 46-51. 吴薇,刘军. 图像分割中的阈值选取方法[J]. 西安工业大学学报,2002,22(4): 309-313. doi: 10.3969/j.issn.1673-9965.2002.04.007WU Wei, LIU Jun. Research on threshold selection for image segmentation[J]. Journal of Xi’an Technological University, 2002, 22(4): 309-313. doi: 10.3969/j.issn.1673-9965.2002.04.007 拜颖乾. 图像分割阈值选取方法的研究[J]. 信息系统工程,2014(2): 146-147. doi: 10.3969/j.issn.1001-2362.2014.02.086BAI Yingqian. Research on threshold selection of image segmentation[J]. China CIO News, 2014(2): 146-147. doi: 10.3969/j.issn.1001-2362.2014.02.086 陈冬岚,刘京南,余玲玲. 几种图像分割阈值选取方法的比较与研究[J]. 机械制造与自动化,2003(1): 77-80. doi: 10.3969/j.issn.1671-5276.2003.01.026CHEN Donglan, LIU Jingnan, YU Lingling. Comparison and research on several methods of threshold selection in image segmentation[J]. Machine Building & Automation, 2003(1): 77-80. doi: 10.3969/j.issn.1671-5276.2003.01.026 时春霖,张超,陈长远,等. 测量机器人小视场星图一维最大熵星点图像分割算法[J]. 测绘学报,2018,47(4): 446-454. doi: 10.11947/j.AGCS.2018.20170202SHI Chunlin, ZHANG Chao, CHEN Changyuan, et al. One-dimensional maximum entropy image segmentation algorithm based on the small field of view of measuring robot star map[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 446-454. doi: 10.11947/j.AGCS.2018.20170202 KITTLER J, ILLINGWORTH J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1): 41-47. KITTLER J, ILLINGWORTH J. Minimum error thresholding[M]. [S.l.]: Elsevier Science Inc., 1986. FAN J, XIE W. Minimum error thresholding: a note[M]. [S.l.]: Elsevier Science Inc., 1997. FAN J. Notes on poisson distribution-based minimum error thresholding[J]. Pattern Recognition Letters, 1998, 19(5/6): 425-431. SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-165. 龙建武. 图像阈值分割关键技术研究[D]. 吉林: 吉林大学, 2014. 章毓晋. 中国图像工程及当前的几个研究热点[J]. 计算机辅助设计与图形学学报,2002,14(6): 489-500.ZHANG Yujin. Image engineering in China and several current research focuses[J]. Journal of Computer-Aided Design & Computer Graphics, 2002, 14(6): 489-500. 龙建武,申铉京,陈海鹏. 自适应最小误差阈值分割算法[J]. 自动化学报,2012,38(7): 1134-1144.LONG Jianwu, SHEN Xuanjing, CHEN Haipeng. Adaptive minimum error thresholding aigorithm[J]. Acta Automatica Sinica, 2012, 38(7): 1134-1144. 范九伦,雷博. 灰度图像最小误差阈值分割法的二维推广[J]. 自动化学报,2009,35(4): 386-393.FAN Jiulun, LEI Bo. Two-dimensional extension of minimum error threshold segmentation method for gray-level images[J]. Acta Automatica Sinica, 2009, 35(4): 386-393. 范九伦,雷博. 二维直线型最小误差阈值分割法[J]. 电子与信息学报,2009,31(8): 1801-1806.FAN Jiulun, LEI Bo. Two-dimensional linear-type mnimum error threshold segmentation method[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1801-1806. 游达章,张建钢,甘勇. 位图图像灰度化的方法及编程实现[J]. 广西科技大学学报,2004,15(1): 23-26.YOU Dazhang, ZHANG Jiangang, GAN Yong. The method and programming realization of graying bitmap image[J]. Journal of Guangxi University of Science and Technology, 2004, 15(1): 23-26. 王欣,于晓,隋永新,等. 基于多小波的图像处理在电晕检测中的应用[J]. 光学精密工程,2006,14(4): 714-719. doi: 10.3321/j.issn:1004-924X.2006.04.033WANG Xin, YU Xiao, SUI Yongxin. Application of multiwavelet based image processing to corona detection[J]. Optics and Precision Engineering, 2006, 14(4): 714-719. doi: 10.3321/j.issn:1004-924X.2006.04.033 汤朋文,陶华敏,肖山竹,等. 几种常用图像分割算法自适应性的分析比较[J]. 数字技术与应用,2016(5): 140-140.TANG Pengwen, TAO Huamin, XIAO Shanzu, et al. Analysis and comparison of self-adaptability of several commonly used image segmentation algorithms[J]. Digital Technology & Application, 2016(5): 140-140. 康牧. 图像处理中几个关键算法的研究[D]. 西安: 西安电子科技大学, 2009. 望建国. 图像预处理的若干问题研究[D]. 南京: 南京理工大学, 2012. 郭琦, 孔斌, 郑飞. 图像分割质量评价的综述[C]// 中国仪器仪表学会青年学术会议. 北京: 仪器仪表学报杂志社, 2007: 610-615. 章毓晋. 图象分割评价技术分类和比较[J]. 中国图象图形学报,1996,1(2): 151-158. doi: 10.11834/jig.19960238ZAHNG Yujin. A classification and comparison of evaluation techniques for image segmentation[J]. Journal of Image and Graphics, 1996, 1(2): 151-158. doi: 10.11834/jig.19960238 SAHOO P K, SOLTANI S, WONG A K C, et al. A survey of thresholding techniques[J]. Computer Vision Graphics & Image Processing, 1988, 41(2): 233-260. LEVINE M D, NAZIF A M. Dynamic measurement of computer generated image segmentations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 155-164. 汪启伟. 图像直方图特征及其应用研究[D]. 合肥: 中国科学技术大学, 2014.