Rapid Recognition of Rock Mass Fractures in Tunnel Faces
-
摘要: 隧道掌子面上含有许多地质信息,若能充分提取和分析,将有助于对隧道工程地质状态作出评价,用于指导隧道设计和施工. 以隧道掌子面数码图像为基础,对掌子面上岩体裂隙检测、提取、分组算法进行研究. 首先,基于数字图像处理技术对掌子面岩体裂隙目标分割算法进行分析,根据分割结果,通过图像细化和边界线拟和、分离、合并、过滤,连接不连续边界,过滤短边界,形成较完整的岩体边界线识别结果;然后,计算岩体边界线视倾角,将视倾角相近的边界线合并为一组,实现对裂隙边界线的自动分组;最后,将本方法应用于实际掌子面岩体图像测试其有效性. 测试结果表明:该方法基本实现了对掌子面上岩体裂隙的自动提取和分组;对具有明显裂隙的掌子面岩体,本算法能较完整的提取出岩体裂隙,错误提取率不超过10%,并实现了自动分组,自动分组错误率不超过5%,提高了掌子面岩体分析的自动化程度,可用于地质素描,并为掌子面围岩分级提供参考依据.Abstract: Tunnel faces contain much geological information, which, if fully extracted and analyzed, will help to evaluate the geological state of tunnel engineering and guide tunnel design and construction. In this paper, rock mass crack detection, extraction and grouping algorithms of the tunnel face are studied on the basis of the tunnel face image. First, the image segmentation algorithm for face rock mass cracks is analyzed using digital image processing technology. According to the segmentation results, the discontinuous boundaries are connected and the short boundaries are filtered through image thinning and boundary fitting, separation, merging and filtering to form a relatively complete recognition result of rock mass boundary lines. Then, the apparent dip angle of rock mass boundary line is calculated, and the boundary lines with similar apparent dips are merged into a group to achieve automatic grouping. This method is applied to real tunnel face images to test its effectiveness. Results show that the proposed method can basically realize automatic extraction and grouping of the rock mass cracks in the funnel face. For rock masses with obvious cracks, the algorithm can extract the cracks with an error rate of more than 10% and implement automatic grouping with an error rate of no and 5%. This method improves automation degree of rock mass analysis of the tunnel face, and can be used for geological sketching map, providing references for the surrounding rock classification of tunnel faces.
-
Key words:
- tunnel face /
- image processing /
- rock mass crack recognition
-
表 1 岩体裂隙自动提取及分组结果与人工修正结果对比
Table 1. Comparison of automatic extraction results and artificial correction results of rock mass fractures
图像序号 自动提取参数设置及提取结果 人工修正情况 自动分组及处理结果 dT /
PixelsαT/(º) DT/
PixelsβT/(º) LT/
Pixels总长度Lt/
Pixels删除总长度Ld/Pixels 删除率Rd/% 添加总长度La/Pixels 添加率Ra/% 错误分组边界线条数 Ne/条 错误分组长度Le/Pixels 错误分组
率Re/%1 2 155 400 155 39.7 3978.0 92.8 2.3 217.6 5.5 1 39.7 1 2 2 155 400 155 47.1 4736.5 107.8 2.2 11.0 2.5 0 0 0 3 2 155 400 155 35.3 3583.0 195.4 5.5 200.0 5.6 0 0 0 -
李术才,刘洪亮,李利平,等. 基于数码图像的掌子面岩体结构量化表征方法及工程应用[J]. 岩石力学与工程学报,2017,36(1): 1-9.LI Shucai, LIU Hongliang, LI Liping, et al. A quantitative method for rock structure at working faces of tunnels based on digital images and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 1-9. LEU S S, CHANG S L. Digital image processing based approach for tunnel excavation faces[J]. Automation in Construction, 2005, 14: 750-765. doi: 10.1016/j.autcon.2005.02.004 周春霖, 朱合华, 李晓军. 新奥法施工隧道掌子面红外照相及图像处理[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3166-3172.ZHOU Chunlin, ZHU Hehua, LI Xiaojun. Application of infrared photography and image processing to tunnel construction with new austrian tunneling method[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3166-3172. 李鹏云,赵科,陈孜迪,等. 基于图像处理的隧道掌子面地质构造信息提取研究[J]. 土木建筑工程信息技术,2017,9(6): 67-72.LI Pengyun, ZHAO Ke, CHEN Zidi, et al. Research on extraction of geological structure information of tunnel excavation faces based on image processing[J]. Journal of Information Technologyin Civil Engineering and Architecture, 2017, 9(6): 67-72. 范留明,李宁. 基于数码摄影技术的岩体裂隙测量方法初探[J]. 岩石力学与工程学报,2005,24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010FAN Liuming, LI Ning. Study on rck mass joint measurement based on digital photogrammetry[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 792-797. doi: 10.3321/j.issn:1000-6915.2005.05.010 罗佳,刘大刚. 围岩结构面发育程度参数的图像处理技术研究[J]. 计算机科学与工程,2013,35(4): 75-80.LUO Jia, LIU Dagang. Research on image processing technology of developmental degree parameters of surrounding rock structure[J]. Computer Science and Engineering, 2013, 35(4): 75-80. 叶英,王梦恕. 隧道掌子面地质信息数字编录识别技术研究[J]. 北京交通大学学报,2007,31(1): 59-62. doi: 10.3969/j.issn.1673-0291.2007.01.014YE Ying, WANG Mengshu. Research on digital catalogue identification technology of geological information in tunnel face[J]. Journal of Beijing Jiaotong University, 2007, 31(1): 59-62. doi: 10.3969/j.issn.1673-0291.2007.01.014 胡刚,金乾坤. 岩体天然裂隙计算机图像处理技术研究[J]. 有色金属(矿山部分),2004,56(5): 39-40. doi: 10.3969/j.issn.1671-4172.2004.05.015HU Gang, JIN Qiankun. Research on computer image processing technology of natural fracture in rock mass[J]. Nonferrous Metals (Mineral Part), 2004, 56(5): 39-40. doi: 10.3969/j.issn.1671-4172.2004.05.015 李弼程, 彭天强, 彭波, 等. 智能图像处理技术[M]. 北京: 电子工业出版社, 2004: 153. CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. 章毓晋. 图像工程——图像处理和分析(上册)[M]. 北京: 清华大学出版社, 1999: 221-222.