• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑桩土相互作用的车-轨-桥系统地震响应分析

雷虎军 黄江泽

雷虎军, 黄江泽. 考虑桩土相互作用的车-轨-桥系统地震响应分析[J]. 西南交通大学学报, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694
引用本文: 雷虎军, 黄江泽. 考虑桩土相互作用的车-轨-桥系统地震响应分析[J]. 西南交通大学学报, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694
LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694
Citation: LEI Hujun, HUANG Jiangze. Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 229-237. doi: 10.3969/j.issn.0258-2724.20190694

考虑桩土相互作用的车-轨-桥系统地震响应分析

doi: 10.3969/j.issn.0258-2724.20190694
基金项目: 国家自然科学基金(51878173,51608120);福建省高校杰出青年科研人才培育计划(GY-Z18159)
详细信息
    作者简介:

    雷虎军(1986—),男,副教授,研究方向为车-桥耦合振动与桥梁抗震,E-mail:leihujun@yeah.net

  • 中图分类号: U24;TB123

Seismic Responses Analysis of Train-Track-Bridge System Considering Pile-Soil Interaction

  • 摘要: 弄清桩土相互作用对车桥系统地震响应的影响对于研究地震引起的高速铁路桥上列车行车安全问题十分必要. 基于列车-轨道-桥梁耦合振动理论,采用Winkler地基梁模拟群桩基础并通过m法计算弹簧参数,建立了地震作用下的列车-轨道-桥梁-群桩耦合振动模型,并编制了仿真分析程序. 以某(88 + 168 + 88)m预应力混凝土连续刚构桥为例,分别建立了考虑桩土相互作用的群桩基础模型以及作为对比的刚性基础模型和弹性基础模型,通过输入3条典型地震波,计算对比了3种模型的耦合振动响应,研究了桩土相互作用的影响. 结果表明:地震作用下桩土相互作用对桥梁、轨道和列车子系统动力响应的影响横向大于竖向,且对桥梁、轨道子系统动力响应的影响大于列车子系统;对于本文的计算条件,不考虑桩土相互作用会使桥梁、轨道和列车子系统的动力响应偏小,其中列车的脱轨系数、轮重减载率和轮轴横向力平均值分别偏小5.8%、8.6%和9.0%;桩土相互作用对列车行车安全性指标的影响不会随车速的变化而变化. 本文的研究成果可为震区高速铁路桥梁的抗震设计提供参考.

     

  • 图 1  耦合振动模型

    Figure 1.  Coupled vibration model

    图 2  群桩基础模型

    Figure 2.  Pile group foundation model

    图 3  桥梁结构总体布置(单位:cm)

    Figure 3.  General layout of the bridge structure (unit: cm)

    图 4  桥梁分析模型

    Figure 4.  Analysis model of the bridge

    图 5  典型地震波

    Figure 5.  Typical seismic waves

    图 6  主梁跨中横向位移对比

    Figure 6.  Comparison of the transverse displacement in the middle span of main beam

    图 7  主梁跨中竖向位移对比

    Figure 7.  Comparison of the vertical displacement in the middle span of main beam

    图 8  主梁跨中断面左侧钢轨横向位移对比

    Figure 8.  Comparison of the lateral displacement of rail on the left side of middle span section of main beam

    图 9  主梁跨中断面左侧钢轨竖向位移对比

    Figure 9.  Comparison of the vertical displacement of rail on the left side of middle span section of main beam

    图 10  脱轨系数对比

    Figure 10.  Comparison of the derailment coefficient

    图 11  轮重减载率对比

    Figure 11.  Comparison of the wheel load reduction ratio

    图 12  轮轴横向力对比

    Figure 12.  Comparison of the wheel-axle lateral force

    图 13  不同车速下的脱轨系数幅值对比

    Figure 13.  Amplitude comparison of the derailment coefficient under different train speeds

    图 14  不同车速下的轮重减载率幅值对比

    Figure 14.  Amplitude comparison of the wheel load reduction ratio under different train speeds

    图 15  不同车速下的轮轴横向力幅值对比

    Figure 15.  Amplitude comparison of the wheel-axle lateral force under different train speeds

    表  1  承台底等效基础刚度

    Table  1.   Equivalent foundation stiffness of the cap bottom

    墩号Dx /(× 1010 N•m−1Dy /(× 1010 N•m−1Dz/(× 1010 N•m−1Rx /(× 1013 N•m/rad−1Ry /(× 1012 N•m•rad−1
    1# 4.36 3.93 1.28 1.040 4.590
    2# 5.86 5.22 2.04 2.140 8.470
    3# 1.85 1.47 8.28 0.288 2.080
    下载: 导出CSV

    表  2  桥梁频率及振型特征

    Table  2.   Frequency and vibration features of the bridge Hz

    阶数桥梁频率振型特征
    群桩基础
    模型
    刚性基础
    模型
    弹性基础
    模型
    1 0.537 0.657 0.587 刚构墩纵向
    弯曲
    2 0.642 0.751 0.690 主梁正对称
    横弯
    4 0.917 1.097 0.990 主梁反对称
    横弯
    5 1.351 1.420 1.381 主梁正对称
    竖弯
    下载: 导出CSV

    表  3  选用地震波信息

    Table  3.   Information for the selected ground motions

    名称事件台站分量PGA/(×gTg/s
    RSN15 Kern County (1952-7-21) Taft Lincoln School Up 0.111 0.349
    RSN51 San Fernando (1971-2-9) 2516 Via Tejon PV 65° 0.026 0.641
    RSN78 San Fernando (1971-2-9) Palmdale Fire Station 120° 0.112 0.842
    下载: 导出CSV

    表  4  不同工况下桥梁位移、加速度和钢轨位移幅值对比

    Table  4.   Bridge displacement,bridge acceleration and rail displacement amplitudes comparison under different conditions

    指标工况横向竖向
    刚性基础弹性基础群桩基础刚性基础弹性基础群桩基础
    桥梁位移/mm RSN15 50.700 55.000 60.400 12.700 13.600 14.200
    RSN51 92.800 115.900 120.800 14.300 15.100 15.700
    RSN78 142.900 190.900 212.100 20.700 21.300 21.800
    平均值 95.500 120.600 131.100 15.900 16.700 17.200
    相对值 1.000 1.263 1.373 1.000 1.050 1.086
    桥梁加速度/(×g) RSN15 0.215 0.320 0.343 0.234 0.260 0.273
    RSN51 0.383 0.457 0.521 0.289 0.305 0.312
    RSN78 0.358 0.554 0.605 0.249 0.258 0.265
    平均值 0.319 0.444 0.490 0.257 0.274 0.283
    相对值 1.000 1.392 1.536 1.000 1.066 1.101
    钢轨位移/mm RSN15 23.600 27.500 37.600 13.400 14.200 14.300
    RSN51 95.400 107.600 113.900 14.600 15.200 16.900
    RSN78 146.800 195.200 213.000 22.500 23.200 24.600
    平均值 88.600 110.100 121.500 16.800 17.600 18.600
    相对值 1.000 1.243 1.371 1.000 1.042 1.104
    下载: 导出CSV

    表  5  列车的3种行车安全性指标幅值对比

    Table  5.   Amplitudes comparison of the three running safety indices

    工况脱轨系数轮重减载率轮轴横向力/kN
    刚性基础弹性基础群桩基础刚性基础弹性基础群桩基础刚性基础弹性基础群桩基础
    RSN150.7850.8320.8380.5030.5260.53286.20091.10093.800
    RSN510.8520.9160.9270.5270.5710.58091.90097.90099.300
    RSN780.8650.8760.8830.5340.5700.58692.80098.800102.300
    平均值0.8340.8750.8830.5210.5560.56690.30095.90098.500
    相对值1.0001.0491.0581.0001.0661.0861.0001.0621.090
      注:列车的行车安全性指标幅值指所有编号车辆、所有轮对处该指标幅值的最大值.
    下载: 导出CSV
  • YANG Y B, WU Y S. Dynamic stability of trains moving over bridges shaken by earthquakes[J]. Journal of Sound and Vibration, 2002, 258(1): 65-94. doi: 10.1006/jsvi.2002.5089
    XIA H, HAN Y, ZHANG N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1563-1579.
    JIN Z B, PEI S L, LI X Z, et al. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges[J]. Journal of Sound and Vibration, 2016, 383: 277-294. doi: 10.1016/j.jsv.2016.06.048
    江博君,冼巧玲,周福霖. 桩土效应对高铁桥梁地震反应的影响分析[J]. 广州大学学报(自然科学版),2016,15(1): 57-63.

    JIANG Bojun, XIAN Qiaoling, ZHOU Fulin. The influence analysis of the effect of pile-soil contact on the seismic response of the high speed railway bridge[J]. Journal of Guangzhou University (Natural Science Edition), 2016, 15(1): 57-63.
    高昊,王君杰,苏俊省,等. 桩-土水平弹簧系数对桥梁地震反应影响的参数分析[J]. 振动与冲击,2017,36(14): 156-167.

    GAO Hao, WANG Junjie, SU Junsheng, et al. Parameter analysis on the influence of soil-pile horizontal spring coefficient on the seismic response of bridges[J]. Joural of Vibration and Shock, 2017, 36(14): 156-167.
    MAKRIS N, TAZOH T, YUN X, et al. Prediction of the measured response of a scaled soil-pile-superstructure system[J]. Soil Dynamics & Earthquake Engineering, 1997, 16(2): 113-124.
    韦晓,范立础,王君杰. 考虑桩-土-桥梁结构相互作用振动台试验研究[J]. 土木工程学报,2002,35(4): 91-97. doi: 10.3321/j.issn:1000-131X.2002.04.017

    WEI Xiao, FAN Lichu, WANG Junjie. Shake table test on soil-pile-structure interaction[J]. China Civil Engineering Journal, 2002, 35(4): 91-97. doi: 10.3321/j.issn:1000-131X.2002.04.017
    谢文,孙利民. 桩-土-斜拉桥动力相互作用体系振动反应特性试验研究[J]. 岩土工程学报,2019,41(7): 1319-1328.

    XIE Wen, SUN Limin. Experimental studies on seismic response characteristics of pile-soil-cable-stayed bridge dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1319-1328.
    熊辉,谷亚东. 基于高速列车振动荷载的桩-土-结构相互作用分析[J]. 铁道科学与工程学报,2019,16(2): 302-309.

    XIONG Hui, GU Yadong. Pile-soil structure interaction analysis based on high-speed train vibration load[J]. Journal of Railway Science and Engineering, 2019, 16(2): 302-309.
    边学成. 高速列车荷载作用下高架桥和地基振动分析[J]. 振动工程学报,2006,19(4): 438-445. doi: 10.3969/j.issn.1004-4523.2006.04.002

    BIAN Xuecheng. Analysis of viaduct-ground vibrations due to high-speed train moving loads[J]. Journal of Vibration Engineering, 2006, 19(4): 438-445. doi: 10.3969/j.issn.1004-4523.2006.04.002
    李忠献,黄健,张媛,等. 地震作用对轻轨铁路车桥系统耦合振动的影响[J]. 地震工程与工程振动,2005,25(6): 183-188. doi: 10.3969/j.issn.1000-1301.2005.06.031

    LI Zhongxian, HUANG Jian, ZHANG Yuan, et al. Influence of seismic excitation on coupled vibration of train-bridge system in light railway[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6): 183-188. doi: 10.3969/j.issn.1000-1301.2005.06.031
    李小珍,刘孝寒,刘德军. 考虑桩-土相互作用的连续刚构桥车桥耦合振动分析[J]. 振动与冲击,2011,30(12): 54-58. doi: 10.3969/j.issn.1000-3835.2011.12.011

    LI Xiaozhen, LIU Xiaohan, LIU Dejun. Coupled vibration analysis of a railway coutinuous rigid-frame bridge and vehicles with soil-structure interaction[J]. Joural of Vibration and Shock, 2011, 30(12): 54-58. doi: 10.3969/j.issn.1000-3835.2011.12.011
    陈令坤,蒋丽忠,陶磊,等. 考虑桩-土作用的高速列车-桥梁地震响应分析[J]. 岩土力学,2012,33(10): 3162-3170.

    CHEN Lingkun, JIANG Lizhong, TAO Lei, et al. Seismic response analysis of high-speed vehicle-bridge considering soil-structure interaction[J]. Rock and Soil Mechanics, 2012, 33(10): 3162-3170.
    乔宏,夏禾,杜宪亭. 考虑桩土相互作用的车桥耦合动力分析[J]. 振动与冲击,2018,37(3): 105-111.

    QIAO Hong, XIA He, DU Xianting. Dynamic analysis for a train-bridge coupled system considering soil-pile interaction[J]. Journal of Vibration and Shock, 2018, 37(3): 105-111.
    雷虎军. 非一致地震激励下列车-轨道-桥梁耦合振动及行车安全性研究[D]. 成都: 西南交通大学, 2014.
    翟婉明, 夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京: 科学出版社, 2011: 32-88.
    雷虎军,李小珍. 非一致地震激励下列车-轨道-桥梁耦合振动模型[J]. 西南交通大学学报,2013,48(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004

    LEI Hujun, LI Xiaozhen. Dynamic model for train-track-bridge coupling system subjected to non-uniform seismic excitation[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 803-809. doi: 10.3969/j.issn.0258-2724.2013.05.004
    ZHAI W M. Two simple fast integration methods for large scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    国家铁路局. 铁路桥涵地基和基础设计规范: TB 10093—2017[S]. 北京: 中国铁道出版社, 2017.
    李永乐,赵凯,蔡宪棠. 桥梁基础刚度有限元模拟的正交三梁模型[J]. 桥梁建设,2010(6): 17-20.

    LI Yongle, ZHAO Kai, CAI Xiantang. Three orthogonal-beam model for finite element simulation of bridge foundation stiffness[J]. Bridge Construction, 2010(6): 17-20.
    LI X Z, ZHANG Z J, ZHANG X. Using elastic bridge bearings to reduce train-induced ground vibrations:An experimental and numerical study[J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 78-90.
    冀昆,温瑞智,任叶飞,等. 我国抗震规范时程分析中地震动的输入数量[J]. 西南交通大学学报,2020,55(4): 743-751.

    JI Kun, WEN Ruizhi, REN Yefei, et al. Number of earthquake ground motion inputs for time-history analysis of seismic design code in china[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 743-751.
    李小珍,刘鸣,杨得海,等. 大跨度上承式钢桁架拱桥的地震损伤演化模拟[J]. 西南交通大学学报,2020,55(6): 1207-1214,1223.

    LI Xiaozhen, LIU Ming, YANG Dehai, et al. Seismic damage evolution simulation of long-span deck steel truss arch bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1207-1214,1223.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  314
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-17
  • 修回日期:  2019-09-27
  • 网络出版日期:  2019-12-11
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回