Shaking Table Tests on Seismic Response of Tunnel with Longitudinal Cracking Lining
-
摘要: 为了研究高速铁路双线隧道衬砌纵向裂缝对结构抗震安全性的影响,针对《铁路隧道设计规范》(TB 10003—2016)IV级围岩开展大型振动台模型试验,试验采用改进的静动耦合剪切模型箱,考虑隧道埋深、衬砌开裂位置和开裂形式3个影响因素,分析隧道衬砌的地震动应变和结构内力响应规律. 试验结果表明:在地震剪切波作用下,浅埋隧道和深埋隧道衬砌结构的破坏形式分别为受拉破坏和受压破坏,破坏位置均首先出现在拱腰,对应的无裂缝衬砌破坏时振动台台面输入波峰值加速度分别为0.8g和0.9g;拱顶和边墙处裂缝对隧道衬砌结构抗震安全性影响较小,而拱腰处裂缝影响显著;浅埋和深埋条件下,拱腰处有裂缝的衬砌破坏时振动台台面输入波峰值加速度分别为0.5g和0.6g;纵向裂缝的开裂形式不同,衬砌破坏时对应的峰值加速度基本相同;在深埋条件下,相比于正截面裂缝,拱腰处斜截面裂缝导致衬砌结构破坏后变形速度加剧.Abstract: In order to study the influence of longitudinal cracks in the lining of double track tunnel of high speed railway on the seismic safety of the structure, a large-scale shaking table model test was carried out on class IV surrounding rock in accordance with the Code for design of railway tunnel (TB 10003—2016). The test adopted an improved static-dynamic coupling shear model box to analyze the response rules of seismic strain and structural internal force of tunnel lining, taking into consideration three influencing factors including the tunnel buried depth, the cracking position and the cracking form of lining. The test results showed that under the action of seismic shear wave, the failure mode of the shallow tunnel is tension failure, while that of the deep tunnel is compression failure, both of which occur at the arch waist. The peak acceleration of input wave of the shaking table was 0.8g and 0.9g, respectively, when the crack-free lining was damaged at the two buried depths. Cracks in vault and sidewall have little influence on seismic response of tunnel, while the cracks at the arch waist have significant effect. Under the shallow and deep buried conditions, the peak acceleration of the input wave of the shaking table was 0.5g and 0.6g, respectively, when the lining with cracks at the arch waist was damaged. For deep-buried tunnels, compared with the normal section cracks, inclined section cracks at the arch waist will speed up the deformation of lining structure after failure but have little influence on the critical value of failure acceleration.
-
Key words:
- tunnel /
- lining structure /
- longitudinal crack /
- seismic response /
- shaking table test
-
表 1 振动台试验的相似关系
Table 1. Similarity Relation in the Shaking Table Test
类型 物理量 相似关系 相似比 几何特性 长度 L ${C_L}$ 1/40 线位移 x ${C_x} = {C_L}$ 1/40 材料特性 密度 ρ ${C_\rho }$ 1 弹性模量 E ${C_E} = {C_L}{C_\rho }{C_a}$ 1/40 泊松比 μ ${C_\mu } = 1$ 应力 σ ${C_\sigma } = {C_E}$ 1/40 应变 ε ${C_\varepsilon } = 1$ 黏聚力 c ${C_c} = {C_E}$ 1/40 内摩擦角 φ ${C_\varphi } = 1$ 动力特性 加速度 a ${C_a}$ 1 速度 v ${C_v} = C_L^{1/2}C_a^{1/2}$ 1/6.32 时间 t ${C_t} = C_L^{1/2}/C_a^{1/2}$ 1/6.32 频率 f ${C_f} = C_a^{1/2}/C_L^{1/2}$ 1/0.16 表 2 围岩原型和模型材料参数
Table 2. Material properties of rock prototype and rock model
类型 容重 γ/(kN•m−3) E/GPa c/MPa φ/(°) 原型 22 1.60 0.240 27 模型 22 0.04 0.006 27 表 3 隧道衬砌结构原型和模型材料参数
Table 3. Material properties of tunnel prototype and tunnel model
类型 E/GPa 抗拉强度 σt/MPa 抗压强度 σc/MPa 原型 30.80 2.00 23.20 模型 0.77 0.05 0.58 表 4 各工况衬砌模型的初始裂损情况
Table 4. Initial cracking of lining structure in model tests
组别 衬砌编号 初始裂损情况 裂缝类型 裂缝位置 开裂截面 浅埋 1 无裂缝 2 纵向裂缝 拱顶 正截面 3 纵向裂缝 右拱腰 正截面 4 纵向裂缝 右边墙 正截面 5 纵向裂缝 右拱腰 斜截面 深埋 6 无裂缝 7 纵向裂缝 拱顶 正截面 8 纵向裂缝 右拱腰 正截面 9 纵向裂缝 右边墙 正截面 10 纵向裂缝 右拱腰 斜截面 表 5 最大剪切应变γmax试验值和理论值比较
Table 5. Experimental and theoretical values comparison of maximum shear strain γmax
加速度峰值/
(×g)试验值/
×10−3理论值/
×10−3差值百分
比/%0.1 0.07 0.21 67.0 0.2 0.33 0.40 25.0 0.3 0.40 0.57 29.8 0.4 0.54 0.77 29.9 0.5 0.79 0.95 16.8 0.6 1.07 1.14 6.1 0.7 1.21 1.33 9.0 0.8 1.58 1.53 3.3 0.9 1.71 1.72 0.6 1.0 1.96 1.90 3.2 -
ASAKURA T. Mountain tunnels performance in the 1995 hyogoken-nanbu earthquake[C]//The 2nd International Symposium on Recent Advances in Exploration Geophysics. Kyoto: Japan Society of Civil Engineers (JSCE), 1997: 173-182. WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150. doi: 10.1016/S0886-7798(01)00047-5 YASHIRO K, KOJIMA Y. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake[J]. Quarterly Report of Railway Techaical Research Institute, 2007, 48: 136-141. doi: 10.2219/rtriqr.48.136 SHEN Yusheng, GAO Bo, YANG Xiaoming, et al. Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 85-98. doi: 10.1016/j.enggeo.2014.07.017 ASAKURA T, KOJIMA Y. Tunnel maintenance in Japan[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2003, 18(2): 161-169. HAACK A, SCHREYER J, JACKEL G. State-of-the-art of non-destructive testing methods for determining the state of a tunnel lining[J]. Tunnelling and Underground Space Technology, 1995, 10(4): 413-431. doi: 10.1016/0886-7798(95)00030-3 RICHARDS J A. Inspection,maintenance and repair of tunnels:International lessons and practice[J]. Tunnelling & Underground Space Technology, 1998, 13(4): 369-375. 重庆市交通委员会. 公路隧道养护技术规范: JTG H12—2015 [S]. 北京: 人民交通出版社, 2015. 刘海京,夏才初,朱合华,等. 隧道病害研究现状与进展[J]. 地下空间与工程学报,2007,3(5): 947-953.LIU Haijing, XIA Caichu, ZHU Hehua, et al. Studies on tunnel damage[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5): 947-953. YUAN Yong, BAI Yun, LIU Jianhang. Assessment service state of tunnel structure[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2012, 27(1): 72-85. 关振长,龚振峰,罗志彬,等. 特大断面隧道地震动力特性的振动台试验研究[J]. 岩土力学,2016,37(9): 2553-2560.GUAN Zhenchang, GONG Zhenfeng, LUO Zhibin, et al. Seismic property of a large section tunnel based on shaking table model tests[J]. Rock and Soil Mechanics, 2016, 37(9): 2553-2560. 蒋树屏,文栋良,郑升宝. 嘎隆拉隧道洞口段地震响应大型振动台模型试验研究[J]. 岩石力学与工程学报,2011,30(4): 649-656.JIANG Shuping, WEN Dongliang, ZHENG Shengbao. Large-scale shaking table test for seismic response in portal section of galongla tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 649-656. 李林,何川,耿萍,等. 浅埋偏压洞口段隧道地震响应振动台模型试验研究[J]. 岩石力学与工程学报,2011,30(12): 2540-2548.LI Lin, HE Chuan, GENG Ping, et al. Study of shaking table model test for seismic response of portal section of shallow unsymmetrical loading tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2540-2548. 孙海峰,景立平,王宁伟,等. 振动台多功能叠层剪切箱研制[J]. 岩石力学与工程学报,2011,30(12): 2498-2506.SUN Haifeng, JING Liping, WANG Ningwei, et al. Development of multifunctional laminar shear container for shaking table test[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2498-2506. 程新俊,景立平,崔杰,等. 不同场地沉管隧道振动台模型试验研究[J]. 西南交通大学学报,2017,52(6): 81-88.CHENG Xinjun, JING Liping, CUI Jie, et al. Research of shaking table model tests on immersed tunnels under different conditions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 81-88. 仇文革, 段东亚, 李冰天, 等. 动静耦合剪切模型箱的设计分析及试验验证[J]. 土木工程学报, 2017, 50(增刊2): 274-280.QIU Wenge, DUAN Dongya, LI Bingtian, et al. Design and test verification of coupling dynamic and static shear model box[J]. China Civil Engineering Journal, 2017, 50(S2): 274-280. 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2017. JOHN C M S, ZAHRAH T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165-197. doi: 10.1016/0886-7798(87)90011-3