• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

单组分地聚物砂浆的力学性能和微观结构分析

杨世玉 赵人达 靳贺松 李福海 乔瑜

杨世玉, 赵人达, 靳贺松, 李福海, 乔瑜. 单组分地聚物砂浆的力学性能和微观结构分析[J]. 西南交通大学学报, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588
引用本文: 杨世玉, 赵人达, 靳贺松, 李福海, 乔瑜. 单组分地聚物砂浆的力学性能和微观结构分析[J]. 西南交通大学学报, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588
YANG Shiyu, ZHAO Renda, JIN Hesong, LI Fuhai, QIAO Yu. Mechanical Performance and Microstructure of Single Component Geopolymer Mortar[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588
Citation: YANG Shiyu, ZHAO Renda, JIN Hesong, LI Fuhai, QIAO Yu. Mechanical Performance and Microstructure of Single Component Geopolymer Mortar[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 101-107, 137. doi: 10.3969/j.issn.0258-2724.20190588

单组分地聚物砂浆的力学性能和微观结构分析

doi: 10.3969/j.issn.0258-2724.20190588
基金项目: 国家自然科学基金(51778531);四川省科技计划资助(2019YJ0219)
详细信息
    作者简介:

    杨世玉(1989—),男,博士研究生,研究方向为新型混凝土材料和结构力学性能,E-mail:shyyang@my.swjtu.edu.cn

    通讯作者:

    赵人达(1961—),男,教授,博士生导师,研究方向为新型混凝土材料和结构力学性能,E-mail:rendazhao@163.com

  • 中图分类号: TU52

Mechanical Performance and Microstructure of Single Component Geopolymer Mortar

  • 摘要: 为了研究不同NaOH浓度、胶砂比及溶胶比在多种固化温度下粉煤灰地聚物砂浆的强度发展规律及其微观机理,进行了力学性能试验,并用扫描电镜(SEM)和压汞试验(MIP)分析了其微观形貌、孔径分布. 分析结果表明: 对浓度为10%的NaOH溶液制备的地聚物砂浆试件,即使在很高的温度下固化也没有观察到明显的强度发展;随着NaOH浓度增加或固化温度上升,单组分地聚物砂浆的抗压和抗弯强度均可获得最佳值,该值出现位置由热固化温度和NaOH浓度的共同决定;地聚物的孔径分布微分曲线为单峰分布,控制NaOH的浓度可以大幅减小孔径微分曲线的峰值,显著降低地聚物的孔隙率;粉煤灰颗粒在NaOH的作用下逐渐溶解,并在其表面形成胶凝物质,当Na+ 浓度较低时,地聚物较少,通过控制NaOH浓度可以使得地聚物变得密实,提高其抗压强度;基于热力学关系的分形模型描述地聚物孔结构形态的效果最好,其次为孔轴线模型,空间填充模型和海绵体模型只能较好地描述胶凝孔隙和过渡孔隙的孔结构分形维数;基于热力学关系与基于海绵模型分形维数计算值均在2.0~3.0之间,与一般水泥基材料的结果相近;适当调整NaOH的浓度可以改善地聚物的孔隙结构.

     

  • 图 1  温度-抗压强度-NaOH浓度的关系

    Figure 1.  Relationship among temperature,compressive strength,and NaOH concentration

    图 2  温度-抗弯强度-NaOH浓度的关系

    Figure 2.  Relationship among temperature,flexural strength,and NaOH concentration

    图 3  温度-抗压强度-胶砂比的关系

    Figure 3.  Relationship among temperature,compressive strength,and cement sand ratio

    图 4  温度-抗弯强度-胶砂比的关系

    Figure 4.  Relationship among temperature,flexural strength,and cement sand ratio

    图 5  温度-抗压强度-溶胶比的关系

    Figure 5.  Relationship among temperature,compressive strength,and solution cement ratio

    图 6  温度-抗弯强度-溶胶比的关系

    Figure 6.  Relationship among temperature,flexural strength,and solution cement ratio

    图 7  地聚物SEM图

    Figure 7.  SEM diagram of geopolymer

    图 8  试件孔径分布统计

    Figure 8.  Statistical analysis of aperture distribution of specimens

    图 9  试件孔径分布微分曲线

    Figure 9.  Differential curve of aperture distribution of specimens

    图 10  海绵模型

    Figure 10.  Menger model

    图 11  空间填充模型

    Figure 11.  Spatial filling model

    图 12  孔轴线模型

    Figure 12.  Hole axis model

    图 13  基于热力学的分形模型

    Figure 13.  Fractal model based on thermodynamics

  • XIE J, WANG J, ZHANG B, et al. Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete[J]. Construction and Building Materials, 2019, 204: 384-398. doi: 10.1016/j.conbuildmat.2019.01.191
    CRETESCU I, HARJA M, TEODOSIU C, et al. Synthesis and characterisation of a binder cement replacement based on alkali activation of fly ash waste[J]. Process Safety and Environmental Protection, 2018, 119: 23-35. doi: 10.1016/j.psep.2018.07.011
    WIANGLOR K, SINTHUPINYO S, PIYAWORAPAIBOON M, et al. Effect of alkali-activated metakaolin cement on compressive strength of mortars[J]. Applied Clay Science, 2017, 141: 272-279. doi: 10.1016/j.clay.2017.01.025
    PART W K, RAMLI M, CHEAH C B. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products[J]. Construction and Building Materials, 2015, 77: 370-395. doi: 10.1016/j.conbuildmat.2014.12.065
    BAKHAREV T. Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cement and Concrete Research, 2005, 35(6): 1224-1232. doi: 10.1016/j.cemconres.2004.06.031
    RATTANASAK U, CHINDAPRASIRT P. Influence of NaOH solution on the synthesis of fly ash geopolymer[J]. Minerals Engineering, 2009, 22(12): 1073-1078. doi: 10.1016/j.mineng.2009.03.022
    PANIAS D, GIANNOPOULOU I P, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 301(1): 246-254.
    龙涛, 石宵爽, 王清远, 等. 粉煤灰基地聚物再生混凝土的力学性能和微观结构[J]. 四川大学学报(工程科学版), 2013, 45(增刊1): 43-47.

    LONG Tao, SHI Xiaoshuang, WANG Qingyuan, et al. Mechanical properties and microstructure of fly ash based geopolymeric polymer recycled concrete[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(S1): 43-47.
    PAN Z, TAO Z, CAO Y F, et al. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature[J]. Cement and Concrete Composites, 2018, 86: 9-18. doi: 10.1016/j.cemconcomp.2017.09.011
    HAMIDI R M, MAN Z, AZIZLI K A. Concentration of NaOH and the Effect on the properties of fly ash based Geopolymer[J]. Procedia Engineering, 2016, 148: 189-193. doi: 10.1016/j.proeng.2016.06.568
    ATIŞ C D, GÖRÜR E B, Karahan O, et al. Very high strength (120 MPa)class F fly ash geopolymer mortar activated at different NaOH amount,heat curing temperature and heat curing duration[J]. Construction and Building Materials, 2015, 96: 673-678. doi: 10.1016/j.conbuildmat.2015.08.089
    SOMNA K, JATURAPITAKKUL C, KAJITVICHYANUKUL P, et al. NaOH-activated ground fly ash geopolymer cured at ambient temperature[J]. Fuel, 2011, 90(6): 2118-2124. doi: 10.1016/j.fuel.2011.01.018
    李星烨. 碱激发粉煤灰砂浆性能研究[D]. 成都: 西南交通大学, 2018
    CHINDAPRASIRT P, JATURAPITAKKUL C, CHALEE W, et al. Comparative study on the characteristics of fly ash and bottom ash geopolymers[J]. Waste Management, 2009, 29(2): 539-543. doi: 10.1016/j.wasman.2008.06.023
    LEE W K W, DEVENTER J S. The effects of inorganic salt contamination on the strength and durability of geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002, 211(2): 115-126.
    YANG W C, GE Y, YUAN J, et al. Pore fractal characteristic of cement pastes with inorganic salts[C]//International Conference of Concrete Pavement. Haikou: [s.n.], 2009: 101-115.
    JI X, CHAN S Y, FENG N. Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials[J]. Cement and Concrete Research, 1997, 27(11): 1691-1699. doi: 10.1016/S0008-8846(97)00157-9
    金珊珊,张金喜,李爽. 混凝土孔结构分形特征的研究现状与进展[J]. 混凝土,2009(10): 34-37,42.

    JIN Shanshan, ZHANG Jinxi, LI Shuang. Current situation and development of fractal characteristic of pore structure of concrete[J]. Concrete, 2009(10): 34-37,42.
    ZHANG B, LIU W, LIU X. Scale-dependent nature of the surface fractal dimension for bi-and multi-disperse porous solids by mercury porosimetry[J]. Applied Surface Science, 2006, 253(3): 1349-1355. doi: 10.1016/j.apsusc.2006.02.009
  • 加载中
图(13)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  339
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-11-27
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回