Energy Consumption Optimization Method for Novel Supply Mode in Tram Operation
-
摘要: 针对无接触网新型供电方式有轨电车运行能耗的问题,研究了一种在储能容量有限的情况下降低运行能耗并提高再生制动能量回收的方法. 该方法在保证列车站间运行距离不变、站间运行时间在可行范围内、且满足超级电容吸收制动功率能力的前提下,通过重新分配牵引、惰行、制动3种工况执行的距离以及列车在牵引与制动工况的出力大小,计算出一条既实现节能又提高制动能量回收的列车目标运行曲线;最后使用该方法对某有轨电车实际运行线路进行优化. 仿真结果表明:在冗余时间内,该方法平均减少4%的运行能耗;同时超级电容在有轨电车制动过程中平均增加4%的制动回馈能量回馈,且能够安全运行.
-
关键词:
- 无接触网新型供电方式 /
- 有轨电车 /
- 超级电容 /
- 能耗 /
- 制动能量
Abstract: Aiming at tram energy consumption of contactless power supply, a method is developed to reduce operating energy consumption and improve regenerative braking energy recovery when energy storage capacity is limited. The method can redistribute the three working conditions of traction, coasting and braking and the output of a train in the traction and braking conditions, provided that the running distance between the train stations is constant, the running time between stations is within the feasible range, and the supercapacitor is capable of absorbing braking power. Then it calculates a train target running curve that achieves energy saving and improves braking energy recovery. Finally, the method optimizes the actual running line of a tram. The simulation results show that the proposed method reduces the operating energy consumption by 4% on average during the redundant time. Meanwhile, the supercapacitor increases the energy feedback in brake feedback by 4% and can operate safely during the braking process of the tram.-
Key words:
- contactless power supply /
- tram /
- supercapacitor /
- energy consumption /
- braking energy
-
表 1 有轨电车参数
Table 1. Parameters of tram
参数 取值 参数 取值 编组 3M1T 额定载客时
总重/t73.2 最高运营速
度/(km•h−1)70 惯性系数 0.05 Aw/Bw/Cw 2.59/0.091/
0.000775传动效率/逆变器效率/% 97/90 表 2 燃料电池、超级电容参数及配置
Table 2. Parameters and configuration of PEMFC and SC
类型 参数 取值 配置数 燃料电池 最大输出功率/kW 150 2 个 工作电压/V 550~762 最大输出电流/A 300 超级电容 额定容量/F 165 15 串,8 并 等效串联电阻/mΩ 10.9 额定电压/V 48 最低工作电压/V 24 最大持续工作电流/A 100 表 3 线路信息
Table 3. Line information
站台编号 站台位置/m 最快到达时间/s 停车时间/s 1 0 0 30 2 410 69.122 30 3 1 460 76.169 30 4 2 290 55.725 30 5 2 790 47.117 30 6 3 300 47.608 30 7 3 805 46.815 30 8 4 475 63.786 30 9 5 535 70.387 30 10 6 450 47.702 30 -
陈维荣,钱清泉,李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报,2009,44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001CHEN Weirong, QIAN Qingquan, LI Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. doi: 10.3969/j.issn.0258-2724.2009.01.001 李奇, 孟翔, 陈维荣, 等. 燃料电池混合动力系统参数匹配与多目标优化[J]. 西南交通大学学报, 2019, 54(5): 1079-1086LI Qi, MENG Xiang, CHEN Weirong, et al. Parameter matching and multi-objective optimization of fuel cell hybrid system for trams[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1079-1086 陈维荣,张国瑞,孟翔,等. 燃料电池混合动力有轨电车动力性分析与设计[J]. 西南交通大学学报,2017,52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001CHEN Weirong, ZHANG Guorui, MENG Xiang, et al. Dynamic performance analysis and design of fuel cell hybrid locomotive[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 1-8. doi: 10.3969/j.issn.0258-2724.2017.01.001 SU Shuo, LI Kepeng, SU Shuai, et al. Energy-efficient train driving strategy considering the on-board energy storage[J]. IOP Conference Series:Materials Science and Engineering, 2018, 392(6): 1-7. 荀径,唐涛,宋晓美,等. 再生制动条件下的城轨列车节能驾驶综合模型[J]. 中国铁道科学,2015,36(1): 104-110. doi: 10.3969/j.issn.1001-4632.2015.01.15XUN Jing, TANG Tao, SONG Xiaomei, et al. Comprehensive model for energy-saving train operation of urban mass transit under regenerative brake[J]. Journal of the China Railway Society, 2015, 36(1): 104-110. doi: 10.3969/j.issn.1001-4632.2015.01.15 孙飞,桂行东,李婷,等. 基于Pareto多目标遗传算法的高峰时段多地铁列车节能优化[J]. 铁道标准设计,2017,61(12): 114-119.SUN Fei, GUI Xingdong, LI Ting, et al. Energy-saving optimization of multi subway trains at peak time based on Pareto multi-objective genetic algorithm[J]. Railway Standard Design, 2017, 61(12): 114-119. 徐茂峻,肖壮,毛畅海,等. 关于储能式有轨电车节能优化控制研究[J]. 计算机仿真,2019,36(2): 88-94. doi: 10.3969/j.issn.1006-9348.2019.02.020XU Junmao, XIAO Zhuang, MAO Changhai, et al. Energy efficient optimization of multiple intervals for energy storage tram[J]. Computer Simulation, 2019, 36(2): 88-94. doi: 10.3969/j.issn.1006-9348.2019.02.020 徐凯,吴磊,赵梅. 多种群分层联合优化的城轨列车ATO研究[J]. 铁道学报,2018,40(6): 90-96. doi: 10.3969/j.issn.1001-8360.2018.06.012XU Kai, WU Lei, ZHAO Mei. Study on urban rail train ATO based on unified optimization of multi-swarm hierarchical structure[J]. Journal of the China Railway Society, 2018, 40(6): 90-96. doi: 10.3969/j.issn.1001-8360.2018.06.012 黄文强, 李奇, 陈维荣, 等. 基于庞特里压金极小值原理与制动速度优化策略的氢燃料电池有轨电车再生制动能量回收方法[J/OL]. 中国电机工程学报: 1-10[2019-06-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20190515.1644.010.html.HUANG Wenqiang, LI Qi, CHEN Weirong, et al. Fuel cell tram regenerative braking energy recovery method based on PMP energy management strategy and braking speed optimization strategy[J/OL]. Proceedings of the Chinese Society for Electrical Engineering: 1-10[2019-06-01]. http://kns.cnki.net/kcms/detail/11.2107.TM.20190515.1644.010.html. 铁道部标准计量研究所. 列车牵引计算规程: TB/T 1407—1998[S]. 北京: 中国标准出版社, 1998. 陈维荣,燕雨,李奇. 基于状态机的燃料电池混合动力系统控制策略[J]. 西南交通大学学报,2019,54(4): 663-670.CHENG Weirong, YAN Yu, LI Qi. Control strategy based on state machine for fuel cell hybrid power system[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 663-670. 徐梁飞,华剑锋,包磊,等. 燃料电池混合动力客车等效氢耗优化策略[J]. 中国公路学报,2009,22(1): 104-108. doi: 10.3321/j.issn:1001-7372.2009.01.017XU Liangfei, HUA Jianfeng, BAO Lei, et al. Optimized strategy on equivalent hydrogen consumption for fuel cell hybrid electric bus[J]. China Journal of Highway and Transport, 2009, 22(1): 104-108. doi: 10.3321/j.issn:1001-7372.2009.01.017