• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

热压自然通风室内污染物浓度演变特性

庄加玮 刁永发 张俪安 沈恒根

庄加玮, 刁永发, 张俪安, 沈恒根. 热压自然通风室内污染物浓度演变特性[J]. 西南交通大学学报, 2021, 56(1): 47-55. doi: 10.3969/j.issn.0258-2724.20190582
引用本文: 庄加玮, 刁永发, 张俪安, 沈恒根. 热压自然通风室内污染物浓度演变特性[J]. 西南交通大学学报, 2021, 56(1): 47-55. doi: 10.3969/j.issn.0258-2724.20190582
ZHUANG Jiawei, DIAO Yongfa, ZHANG Li’an, SHEN Henggen. Evolution Characteristics of Indoor Pollutant Concentration in Buoyancy-Driven Natural Ventilation[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 47-55. doi: 10.3969/j.issn.0258-2724.20190582
Citation: ZHUANG Jiawei, DIAO Yongfa, ZHANG Li’an, SHEN Henggen. Evolution Characteristics of Indoor Pollutant Concentration in Buoyancy-Driven Natural Ventilation[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 47-55. doi: 10.3969/j.issn.0258-2724.20190582

热压自然通风室内污染物浓度演变特性

doi: 10.3969/j.issn.0258-2724.20190582
基金项目: 国家重点研发计划(2018YFC0705300)
详细信息
    作者简介:

    庄加玮(1990—),男,博士研究生,研究方向为室内污染物分布及控制特性,E-mail:1062383230@qq.com

    通讯作者:

    刁永发(1968—),男,教授,博士,研究方向为工业与民用建筑通风节能技术,E-mail:diaoyongfa@dhu.edu.cn

  • 中图分类号: TU834.1

Evolution Characteristics of Indoor Pollutant Concentration in Buoyancy-Driven Natural Ventilation

  • 摘要: 为探究热压自然通风向稳态发展过程室内气态污染物的迁移规律,对不同高度处污染物浓度演化进行了分析. 首先结合预测热分层瞬时变化的非均匀三层模型,针对室内不同的下层污染物混合特性,建立了均匀混合和纯置换两种热压自然通风室内污染物输送模型;其次,采用4阶龙格-库塔(Runge-Kutta)方法迭代求解,得到了通风过程室内污染物层高与浓度演变特性;最后,分析了有效通风面积和浮力组合系数对污染物浓度变化的影响. 结果表明:垂直速度为0的界面与新鲜空气层界面是两个不同的分界面;有效通风面积越大,两者高度差的峰值越大,到达稳态所需时间越短;浮力组合系数越大,任意时刻两者高度差越大,且随有效通风面积的增大越发明显;下层污染物混合特性会影响污染物分层以及演变特性,但不改变稳定时刻污染物浓度分布,通风过程室内上层污染物浓度均要大于下层;纯置换模型下原有冷空气层污染物浓度随时间不断降低至定值,下层污染物浓度保持恒定,而上层污染物浓度在初始阶段急剧增大,后缓慢减低;均匀混合模型的上下层污染物浓度会缓慢衰减至定值;此外,增大有效通风面积可缩短污染物衰减时间,提高排污效率,而浮力组合系数对污染物浓度变化的影响则可忽略.

     

  • 图 1  热压自然通风瞬时流动示意

    Figure 1.  Schematic of transient flow in buoyancy-driven natural ventilation

    图 2  模型Ⅰ下通风过程典型界面垂直速度

    Figure 2.  Vertical velocities of typical section during ventilation progress for model Ⅰ

    图 3  模型Ⅱ下通风过程典型界面垂直速度

    Figure 3.  Vertical velocities of typical section during ventilation progress for model Ⅱ

    图 4  污染物层高的瞬时变化

    Figure 4.  Transient change of pollutant height

    图 5  a = 0.2,λ = 0.5时污染物浓度的瞬时变化

    Figure 5.  Transient change of pollutant concentration for a = 0.2 and λ = 0.5

    图 6  aλ 对污染物浓度瞬时变化的影响

    Figure 6.  Effects of a and λ on transient variation of pollutant concentration

  • WANG J, ZHANG T, WANG S, et al. Gaseous pollutant transmission through windows between vertical floors in a multistory building with natural ventilation[J]. Energy and Buildings, 2017, 153: 325-340. doi: 10.1016/j.enbuild.2017.08.025
    陶天吟. 热压自然通风房间气流特性及热舒适性研究[D]. 扬州: 扬州大学, 2015.
    LINDEN P F, LANE-SERFF G F, SMEED D A. Emptying filling boxes:the fluid mechanics of natural ventilation[J]. Journal of Fluid Mechanics, 1990, 212: 309-335. doi: 10.1017/S0022112090001987
    HUNT G R, KAYE N B. Pollutant flushing with natural displacement ventilation[J]. Building and Environment, 2006, 41(9): 1190-1197. doi: 10.1016/j.buildenv.2005.04.022
    KAYE N B, HUNT G R. Time-dependent flows in an emptying filling box[J]. Journal of Fluid Mechanics, 2004, 520: 135-156. doi: 10.1017/S0022112004001156
    YANG X, KANG Y, ZHONG K. Theoretical predictions of transient natural displacement ventilation[J]. Building Simulation, 2013, 6(2): 165-171. doi: 10.1007/s12273-013-0098-7
    ZHUANG J, JIANG Q, DIAO Y. Non-uniform three-layer models to predict transient flows in buoyancy-driven natural ventilation with a localized heat source[J]. Science and Technology for the Built Environment, 2019, 25: 643-655. doi: 10.1080/23744731.2018.1556054
    杨秀峰,钟珂,亢燕铭. 热压自然通风房间的瞬态污染状况分析[J]. 东华大学学报(自然科学版),2012,38(6): 750-757. doi: 10.3969/j.issn.1671-0444.2012.06.021

    YANG Xiufeng, ZHONG Ke, KANG Yanming. Analysis on transient air pollution in buoyancy-induced naturally ventilated enclosures[J]. Journal of Donghua University (Natural Science), 2012, 38(6): 750-757. doi: 10.3969/j.issn.1671-0444.2012.06.021
    MORTON B R, TAYLOR G, TRUNER J S. Turbulent gravitational convection from maintained and instantaneous sources[J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 1956, 234(1196): 1-23.
    FAURE X, ROUX N L. Thermal stratification produced by plumes and jets in encloused spaces[J]. Building and Environment, 2012, 50: 221-230. doi: 10.1016/j.buildenv.2011.11.007
    LI Y. Buoyancy-driven natural ventilation in a thermally stratified one-zone building[J]. Building and Environment, 2000, 35(3): 207-214. doi: 10.1016/S0360-1323(99)00012-8
    KAYE N B, HUNT G R. Heat source modelling and natural ventilation efficiency[J]. Building and Environment, 2007, 42(4): 1624-1631. doi: 10.1016/j.buildenv.2006.02.005
    BOLSTER D T, LINDEN P F. Contaminants in ventilated filling boxes[J]. Journal of Fluid Mechanics, 2007, 591: 97-116. doi: 10.1017/S0022112007007732
    YANG X, WANG G, ZHONG K, et al. Transient pollutant flushing of buoyancy-driven natural ventilation[J]. Building Simulation, 2012, 5(2): 147-155. doi: 10.1007/s12273-012-0077-4
    KAYE N B, JIANG Y, COOK M J. Numerical simulation of transient flow development in a naturally ventilated room[J]. Building and Environment, 2009, 44(5): 889-897. doi: 10.1016/j.buildenv.2008.06.016
    YANG X, ZHONG K, KANG Y, et al. Numerical investigation on the airflow characteristics and thermal comfort in buoyancy-driven natural ventilation rooms[J]. Energy and Buildings, 2015, 109: 255-266. doi: 10.1016/j.enbuild.2015.09.071
    SEIFERT J, LI Y, AXLEY J, et al. Calculation of wind-driven cross ventilation in buildings with large openings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(12): 925-947. doi: 10.1016/j.jweia.2006.04.002
  • 加载中
图(7)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  258
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 修回日期:  2019-10-26
  • 网络出版日期:  2019-11-20
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回