• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轮对安装偏角对高速列车过转辙器的动力特性影响

陈嵘 王雪彤 陈嘉胤 丁晔 徐井芒

陈嵘, 王雪彤, 陈嘉胤, 丁晔, 徐井芒. 轮对安装偏角对高速列车过转辙器的动力特性影响[J]. 西南交通大学学报, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535
引用本文: 陈嵘, 王雪彤, 陈嘉胤, 丁晔, 徐井芒. 轮对安装偏角对高速列车过转辙器的动力特性影响[J]. 西南交通大学学报, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535
CHEN Rong, WANG Xuetong, CHEN Jiayin, DING Ye, XU Jingmang. Influence of Wheelset Installation Deflection Angle on Dynamic Characteristics of High-Speed Vehicles Crossing Switch[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535
Citation: CHEN Rong, WANG Xuetong, CHEN Jiayin, DING Ye, XU Jingmang. Influence of Wheelset Installation Deflection Angle on Dynamic Characteristics of High-Speed Vehicles Crossing Switch[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 872-882. doi: 10.3969/j.issn.0258-2724.20190535

轮对安装偏角对高速列车过转辙器的动力特性影响

doi: 10.3969/j.issn.0258-2724.20190535
基金项目: 国家重点研发计划(2017YFB1201102)
详细信息
    作者简介:

    陈嵘(1981—),男,教授,研究方向为道路与铁道工程,E-mail:chenrong@home.swjtu.edu.cn

  • 中图分类号: U213.6

Influence of Wheelset Installation Deflection Angle on Dynamic Characteristics of High-Speed Vehicles Crossing Switch

  • 摘要: 高速列车轮对因定位不准会导致不同程度的初始安装偏差,在通过道岔等薄弱环节时轮轨关系急剧恶化,影响行车安全. 为研究车辆在初始安装偏角状态下通过高速道岔的动力学性能,以18号道岔为研究对象建立了具有初始偏转角的车辆-道岔耦合动力学模型,对前轮对偏转、后轮对偏转、前/后轮对同向偏转、前/后轮对反向偏转4种工况进行仿真,结合理论推导与数值仿真分析了不同偏转角对车辆入岔姿态及直逆向过岔走行性能的影响. 研究结果表明:初始偏转角向尖轨侧偏转时会导致轮轨过渡位置提前,甚至造成轮缘接触;初始安装偏角对轮轨垂向力的影响主要与偏角形式及偏转角有关,且偏转角超过一定限度时,岔区固有不平顺会进一步加剧轮轨垂向冲击;轮轨横向力主要受主接触点方向与道岔区横向冲击方向的叠加控制;前/后轮对反向偏转情况下,轮轨接触关系恶化,当偏转角为−2.0~−3.0 mrad,脱轨系数超限,影响行车安全.

     

  • 图 1  初始安装偏角类型

    Figure 1.  Initial installation deflection type

    图 2  车岔模型拓扑图

    1~4:轮轨力;5~8:一系弹簧力;9~12:一系垂向减振器力;13~16:一系轴箱转臂节点力;17~18:二系空气弹簧力;19:横向止挡力;20:牵引拉杆力;21:抗侧滚扭杆力;22~25:二系抗蛇形减振器力;26~27:二系横向减振器力.

    Figure 2.  Topological graph of vehicle-turnout model

    图 3  18号高速道岔示意

    Figure 3.  Diagram of No.18 high speed turnout

    图 4  前轮对偏转1.0 mrad入岔姿态

    Figure 4.  Attitude change with 1.0 mrad front wheelset deflection

    图 5  后轮对偏转1.0 mrad入岔姿态

    Figure 5.  Attitude change with 1.0 mrad rear wheelset deflection

    图 6  前/后轮对反向偏转1.0 mrad入岔姿态

    Figure 6.  Attitude change with 1.0 mrad front/rear wheelset reverse deflection

    图 7  前/后轮对同向偏转1.0 mrad入岔姿态

    Figure 7.  Attitude change with 1.0 mrad front/rear wheelset co-deflection

    图 8  单个轮对存在安装偏角时轮轨力最大值

    Figure 8.  Maximum wheel-rail force with installation deflection of single wheelset

    图 9  前/后轮对存在安装偏角时轮轨力最大值

    Figure 9.  Maximum wheel-rail force when front/rear wheel pair has installation deflection angle

    图 10  前/后轮对反向偏转情况下轮轨横向力

    Figure 10.  Wheel-rail lateral force with front/rear wheelset reverse deflection

    图 11  前/后轮对反向偏转情况下钢轨接触点变化

    Figure 11.  Rail contact point position with front/ rear wheelset reverse deflection

    图 12  安全性指标及磨耗指数

    Figure 12.  Safety indexes and wear indexes

    图 13  平稳性指标

    Figure 13.  Stability index

    图 14  3种工况在转辙器区摇头角的变化规律

    Figure 14.  Variation law of shake head angle in switch area under three working conditions

    图 15  反向偏转 −3.0 mrad时速度变化对横向力的影响

    Figure 15.  Influences of velocity change on transverse force with −3.0 mrad reverse deflection

    图 16  反向偏转 −2.0~−3.0 mrad时速度变化对脱轨系数峰值的影响

    Figure 16.  Influences of velocity change on derailment coefficient with −2.0~−3.0 mrad reverse deflection

    表  1  安全性指标对比分析

    Table  1.   Comparative analysis of safety indicators

    结果脱轨系数轮轴横向力/kN轮重减载率
    本文0.09811.0000.111
    实测0.080~0.1108.000~11.4000.110~0.120
    下载: 导出CSV
  • LEARY J F, WILSON N G. Effects of axle misalignments on rolling resistance and wheel wear[C]//ASME Winter Annual Meeting. New York: ASME, 1985: 1-8
    丁军君,李芾. 基于轮对安装偏转角和轮径差的高速列车车轮磨耗研究[J]. 铁道学报,2011,33(2): 20-25.

    DING Junjun, LI Fu. Study on wheel wear of high-speed train based on wheelset deflection angle and radius difference[J]. Journal of the China Railway Society, 2011, 33(2): 20-25.
    汪煌,钟文生,姚远. 轮对安装偏转角对高速列车车轮磨耗的影响[J]. 机车电传动,2018,263(4): 60-64.

    WANG Huang, ZHONG Wensheng, YAO Yuan, et al. Influence of wheelset installation deflection angle on wheel wear of high-speed train[J]. Electric Drive for Locomotives, 2018, 263(4): 60-64.
    沈钢,曹志礼,赵惠祥. 交叉支撑式转向架形位偏差的动力学性能影响[J]. 同济大学学报(自然科学版),2002,30(12): 1503-1507.

    SHEN Gang, CAO Zhili, ZHAO Huixiang. Analysis of effects of shape misalignment of 3- piece bogie with cross bar on dynamic performances[J]. Journal of Tongji University(Natural Science), 2002, 30(12): 1503-1507.
    王卫东,李金森. 转向架轴距误差对车辆直线动力学性能影响的分析[J]. 中国铁道科学,1995,16(4): 103-110.

    WANG Weidong, LI Jinsen. The influence of bogie wheelbase assembly errors upon the vehicle dynamic behaviour on straight track[J]. China Railway Science, 1995, 16(4): 103-110.
    王卫东,李金森. 转向架装配误差对车辆动力学性能影响的分析[J]. 铁道机车车辆,1996(1): 11-16.

    WANG Weidong, LI Jinsen. The influence of bogie assembly errors on the vehicle dynamic behaviour[J]. Railway Locomotive and Car, 1996(1): 11-16.
    邹瑞明,马卫华,毕鑫. 轮对安装偏角对高速铁道车辆动力学性能的影响[J]. 华东交通大学学报,2013,30(6): 6-11.

    ZOU Ruiming, MA Weihua, BI Xin. Influences of wheelset defection angle on dynamic performance of high-speed railway vehicle[J]. Journal of East China Jiaotong University, 2013, 30(6): 6-11.
    池茂儒,张卫华,金学松,等. 轮对安装误差对铁道车辆行车安全性的影响[J]. 西南交通大学学报,2010,45(1): 12-16.

    CHI Maoru, ZHANG Weihua, JIN Xuesong, et al. Influence of wheelset misalignment on running safety of railway vechicles[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 12-16.
    池茂儒,张卫华,金学松,等. 轮对安装形位偏差对车辆系统稳定性的影响[J]. 西南交通大学学报,2008,43(5): 621-625.

    CHI Maoru, ZHANG Weihua, JIN Xuesong, et al. Influence of shape misalignment of wheelsets on stability of vechicle system[J]. Journal of Southwest Jiaotong University, 2008, 43(5): 621-625.
    陈嵘,陈嘉胤,王平,等. 轮径差对道岔区轮轨接触几何和车辆过岔走行性能的影响[J]. 铁道学报,2018,40(5): 124-130.

    CHEN Rong, CHEN Jiayin, WANG Ping, et al. Effect of wheel diameter difference on wheel-rail contact geometry and vehicle running behavior in turnout area[J]. Journal of the China Railway Society, 2018, 40(5): 124-130.
    PALSSON B A, NIELSEN J C O. Wheel-rail interaction and damage in switches and crossings[J]. Vehicle System Dynamics, 2012, 50(1): 43-58. doi: 10.1080/00423114.2011.560673
    WANG Ping. Design of high-speed railway turnouts: theory and applications[M]. [S.l.]: Elsevier, 2015: 1-464.
    张洪. 准高速客车转向架轮缘磨耗原因及改进措施[J]. 铁道车辆,2000,38(5): 3-7.

    ZHANG Hong. Causes to the wheel flange wear on quasi-high speed passenger car bogies and the improvement measures[J]. Rolling Stock, 2000, 38(5): 3-7.
    ANDERS J, BJORN P, MAGNUS E, et al. Simulation of wheel-rail contact and damage in switches & crossings[J]. Wear, 2011, 271(1): 472-481.
    李刚. 高速动车组道岔通过性能及影响因素分析[D]. 成都: 西南交通大学, 2012.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  271
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-18
  • 修回日期:  2020-01-06
  • 网络出版日期:  2021-03-23
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回