• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

表面有螺旋装饰条的大跨贝壳形屋盖风荷载特性

林拥军 林池锬 周祎 刘开齐 潘毅

林拥军, 林池锬, 周祎, 刘开齐, 潘毅. 表面有螺旋装饰条的大跨贝壳形屋盖风荷载特性[J]. 西南交通大学学报, 2021, 56(2): 261-271. doi: 10.3969/j.issn.0258-2724.20190472
引用本文: 林拥军, 林池锬, 周祎, 刘开齐, 潘毅. 表面有螺旋装饰条的大跨贝壳形屋盖风荷载特性[J]. 西南交通大学学报, 2021, 56(2): 261-271. doi: 10.3969/j.issn.0258-2724.20190472
LIN Yongjun, LIN Chitan, ZHOU Yi, LIU Kaiqi, PAN Yi. Wind Load Characteristics of Large-Span Shell-Shaped Roof with Decorative Spiral Strips[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 261-271. doi: 10.3969/j.issn.0258-2724.20190472
Citation: LIN Yongjun, LIN Chitan, ZHOU Yi, LIU Kaiqi, PAN Yi. Wind Load Characteristics of Large-Span Shell-Shaped Roof with Decorative Spiral Strips[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 261-271. doi: 10.3969/j.issn.0258-2724.20190472

表面有螺旋装饰条的大跨贝壳形屋盖风荷载特性

doi: 10.3969/j.issn.0258-2724.20190472
基金项目: 国家自然科学基金(51608453);国家重点研发计划资助项目(2016YFC0802205,2016YFB0303603-4)
详细信息
    作者简介:

    林拥军(1974—),男,副教授,博士,研究方向为结构抗风与抗震,E-mail:scsmith@126.com

  • 中图分类号: TU312+

Wind Load Characteristics of Large-Span Shell-Shaped Roof with Decorative Spiral Strips

  • 摘要: 为了解装饰造型对大跨贝壳形屋盖风荷载特性的影响,研究了某表面有螺旋形装饰条高铁站房屋盖的风压分布特征. 首先,基于Reynolds时均RNG k-ε湍流模型,建立表面有装饰条大跨贝壳形屋盖的数值风洞模型,以模拟屋盖风压分布,通过与风洞试验结果的对比分析,验证了数值模型的可靠性和适用性;然后,建立表面无装饰条贝壳形屋盖的数值风洞,并进行数值模拟;最后,将表面有装饰条屋盖和表面无装饰条屋盖的计算结果进行对比,从风荷载升力系数、局部体型系数和局部区域速度矢量分布方面,分析表面有螺旋形装饰条贝壳形屋盖的风场变化特性. 研究结果表明:数值模拟得到的表面有装饰肋条大跨贝壳形屋盖风载体型系数与风洞试验的体型系数相对误差在 ± 25%以内,风荷载升力系数偏差率在−7.1%~6.1%;表面有装饰条模型的风载升力系数小于表面无装饰条模型,最大偏差率达22.4%,设置装饰条对大跨贝壳形屋盖的整体抗风有利;设置装饰条可以使屋面大部分区域的局部风压减小0~50%,但也会使得个别区域增大2~5倍,在对局部附属构件设计时应予以重点关注;装饰肋条间有一定的狭管效应,肋条对风流的阻挡效应致使风流在肋条处有明显的漩涡产生,并使得肋条自身的风压较高,表面有装饰条屋盖会在背风面产生比表面无装饰条屋盖更大范围的尾涡.

     

  • 图 1  有表面装饰条大跨贝壳形屋盖(单位:m)

    Figure 1.  Large-span scalloped roof surface with decorative strips (unit:m)

    图 2  贝壳形屋盖几何模型

    Figure 2.  Geometric model of shell-shaped roof

    图 3  数值风洞的流体计算域和边界条件(单位:m)

    Figure 3.  Fluid calculation domain and boundary conditions of numerical wind tunnel (unit: m)

    图 4  屋盖表面局部网格划分情况

    Figure 4.  Local meshing of the roof surface

    图 5  模型在风洞中的情况

    Figure 5.  Model in the wind tunnel

    图 6  试验风向角示意

    Figure 6.  Test direction

    图 7  平均风压系数试验值与模拟计算值随测点变化曲线

    Figure 7.  Curves of the experimental and simulated values of mean wind pressure coefficients varying with the measured points

    图 8  风压系数偏差比随测点的变化曲线

    Figure 8.  Variation curve of deviation ratio of wind pressure coefficient with measuring points

    图 9  屋盖局部区块风荷载体型系数分布

    Figure 9.  Distribution of wind load shape coefficient of local block in the roof

    图 10  风荷载体型系数相对误差

    Figure 10.  Relative error of wind load shape coefficient

    图 11  风荷载升力系数随风向角的变化情况

    Figure 11.  Variation of lift coefficient of wind load with wind direction angle

    图 12  风向角及细部区块定义

    Figure 12.  Definition of wind direction angle and detailed block

    图 13  风荷载局部体型系数随区块的变化曲线

    Figure 13.  Variation curve of local shape coefficient of wind load with block size

    图 14  风荷载局部体型系数偏差比随区块的变化曲线

    Figure 14.  Variation curve of deviation ratio of local shape factor of wind load with block size

    图 15  0° 风向角part 1风压系数分布

    Figure 15.  Wind pressure coefficient distribution of part 1 under 0° wind angle

    图 16  270° 风向角part 1风压系数分布

    Figure 16.  Wind pressure coefficient distribution of part 1 under 270° wind angle

    图 17  0° 风向角下part 1速度示意

    Figure 17.  Velocity vector of part 1 for 0° wind direction angle

    图 18  0° 风向角下10 m高度处水平风速示意

    Figure 18.  Horizontal wind speed vector at 10 m height under 0° wind angle

    图 19  270° 风向角下10 m高度处水平风速示意

    Figure 19.  Horizontal wind speed vector at 10 m height under 270° wind angle

    表  1  各风向角下的风荷载升力系数及偏差率

    Table  1.   Wind load lift coefficient and deviation rate undereach wind direction angle

    风向角/(°)风荷载升力系数偏差率/%
    ${\beta _{\rm{1}}}$${\beta _{\rm{2}}}$${\beta _3}$$\dfrac{ {{\beta _1} - {\beta _2}} }{ { {\beta _1} } }$$\dfrac{ {{\beta _3} - {\beta _2}} }{ { {\beta _3} } }$$\dfrac{ {{\beta _3} - {\beta _1}} }{ { {\beta _3} } }$
    0 0.23 0.21 0.24 6.1 10.5 4.6
    45 0.36 0.35 0.43 2.2 18.1 16.2
    90 0.47 0.45 0.59 3.6 22.4 19.5
    135 0.39 0.38 0.42 3.8 10.6 7.1
    180 0.25 0.24 0.25 3.9 3.2 −0.8
    225 0.38 0.39 0.43 −3.2 8.0 10.8
    270 0.39 0.41 0.50 −4.9 18.6 22.4
    315 0.38 0.41 0.42 −7.1 1.5 8.0
    下载: 导出CSV
  • HOLMES J D. Wind loading of structures[M]. 2nd edition. Oxon: Taylor & Francis, 2007: 50-56.
    YASUI H, MARUKAWA H, KATAGIRI J. Study of wind-induced response of long-span structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 277-288. doi: 10.1016/S0167-6105(99)00078-1
    UEMATSU Y, YAMADA M, SASAKI A. Wind-induced dynamic response and resultant load estimation for a flat long-span roof[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 65(1/2/3): 155-166. doi: 10.1016/S0167-6105(97)00032-9
    中华人民共和国国家标准. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    李波,魏梓曦,单文姗,等. 建筑造型对悬挑屋盖风荷载的影响[J]. 湖南大学学报(自然科学版),2018,45(5): 94-101.

    LI Bo, WEI Zixi, SHAN Wenshan, et al. Effect of architectural surfaces on wind load of cantilever roof[J]. Journal of Hunan University (Natural Sciences), 2018, 45(5): 94-101.
    张建,李波,单文姗,等. 波纹状悬挑大跨屋盖的风荷载特性[J]. 建筑结构学报,2017,38(3): 111-117.

    ZHANG Jian, LI Bo, SHAN Wenshan, et al. Wind load on wavy-shaped long-span cantilevered roof[J]. Journal of Building Structures, 2017, 38(3): 111-117.
    MONTAZERI H, BLOCKEN B. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies:validation and sensitivity analysis[J]. Building and Environment, 2013, 60(3): 137-149.
    YUAN Ke, HUI Yi, CHEN Zhengqing. Effects of facade appurtenances on the local pressure of high-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 26-37. doi: 10.1016/j.jweia.2018.05.004
    艾辉林,周志勇. 超高层建筑外表面复杂装饰条的风荷载特性研究[J]. 工程力学,2016,33(8): 141-149.

    AI Huilin, ZHOU Zhiyong. Research on wind load characteristics of complex decorative strips on the outer surface of high-rise building[J]. Engineering Mechanics, 2016, 33(8): 141-149.
    全涌,严志威,顾明,等. 局部外形特征对高层建筑立面上围护结构风荷载的影响[J]. 振动与冲击,2009,28(12): 132-135. doi: 10.3969/j.issn.1000-3835.2009.12.032

    QUAN Yong, YAN Zhiwei, GU Ming, et al. Effects of local shape characteristics on wind loads on the facades of high-rise buildings[J]. Journal of Vibration and Shock, 2009, 28(12): 132-135. doi: 10.3969/j.issn.1000-3835.2009.12.032
    沈国辉,钱涛,杨晓强,等. 设有外镂空装饰结构的扭转体型高层建筑风荷载研究[J]. 建筑结构学报,2013,34(6): 68-74.

    SHEN Guohui, QIAN Tao, YANG Xiaoqiang, et al. Study of wind loads on torsion shaped high-rise building with outer pierced ornament structure[J]. Journal of Building Structures, 2013, 34(6): 68-74.
    林拥军,沈艳忱,李明水,等. 大跨翘曲屋盖风压分布的风洞试验与数值模拟[J]. 西南交通大学学报,2018,53(2): 226-233. doi: 10.3969/j.issn.0258-2724.2018.02.002

    LIN Yongjun, SHEN Yanchen, LI Mingshui, et al. Evaluation of wind pressure distribution for large-span warpage roof via wind tunnel testing and numerical simulation[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 226-233. doi: 10.3969/j.issn.0258-2724.2018.02.002
    LU C L, LI Q S, HUANG S H, et al. Large eddy simulation of wind effects on a long-span complex roof structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100: 1-18. doi: 10.1016/j.jweia.2011.10.006
    LIU Man, LI Qiusheng, HUANG Hong, et al. Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 39-57. doi: 10.1016/j.jweia.2018.05.014
    BLOCKEN B. 50 years of computational wind engineering:past,present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129: 69-102. doi: 10.1016/j.jweia.2014.03.008
    DELAUNAY D, LAKEHAL D, PIERRAT D. Numerical approach for wind loads predictionon buildings and structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57: 307-321. doi: 10.1016/0167-6105(94)00112-Q
    林拥军,宋长江,罗楠,等. 大跨度单层网壳结构风洞试验研究[J]. 工业建筑,2013,43(7): 130-134.

    LIN Yongjun, SONG Changjiang, LUO Nan, et al. Study on wind tunnel test of large-span single-layer reticulated shell structure[J]. Industrial Construction, 2013, 43(7): 130-134.
    FRANKE J, HELLSTEN A, SCHLUNZEN H, et al. Best practice guideline for the CFD simulation of flows in the urban environment[M]. Brussels: COST Office, 2007: 1-52.
    YOSHIHIDE T, AKASHI M, RYUICHIRO Y, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 1749-1761. doi: 10.1016/j.jweia.2008.02.058
    Architectural Institute of Japan. Recommendations for loads on buildings/commentary[S]. Tokyo: Architectural Institute of Japan, 2004.
    潘毅,李玲娇,马存明,等. 四川稻城亚丁机场航站楼风洞试验研究[J]. 工业建筑,2014,44(9): 139-144.

    PAN Yi, LI Lingjiao, MA Cunming, et al. Wind tunnel test on the terminal of Daocheng Yading airport in Sichuan[J]. Industrial Construction, 2014, 44(9): 139-144.
    王振华,袁行飞,董石麟. 大跨度椭球屋盖结构风压分布的风洞试验和数值模拟[J]. 浙江大学学报(工学版),2007,41(9): 1462-1466.

    WANG Zhenhua, YUAN Xingfei, DONG Shilin. Wind tunnel experiment and numerical simulation of wind pressure distribution of long-span ellipsoidal shell structure[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(9): 1462-1466.
    MURAKAMI S, MOCHIDA A. 3-D numerical simulation of airflow around a cubic model by means of the k-e model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 31(10): 283-303.
    LETCHFORD C W, SARKAR P P. Mean and fluctuating wind loads on rough and smooth parabolic domes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88: 101-117. doi: 10.1016/S0167-6105(00)00030-1
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  251
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-26
  • 修回日期:  2019-09-14
  • 网络出版日期:  2019-09-18
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回