• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

多孔棉布-酚醛轴承保持架的应变速率敏感性

张亚锋 张韶华 周刚 张激扬 卿涛 周宁宁

张亚锋, 张韶华, 周刚, 张激扬, 卿涛, 周宁宁. 多孔棉布-酚醛轴承保持架的应变速率敏感性[J]. 西南交通大学学报, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
引用本文: 张亚锋, 张韶华, 周刚, 张激扬, 卿涛, 周宁宁. 多孔棉布-酚醛轴承保持架的应变速率敏感性[J]. 西南交通大学学报, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457
Citation: ZHANG Yafeng, ZHANG Shaohua, ZHOU Gang, ZHANG Jiyang, QING Tao, ZHOU Ningning. Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 847-852, 863. doi: 10.3969/j.issn.0258-2724.20190457

多孔棉布-酚醛轴承保持架的应变速率敏感性

doi: 10.3969/j.issn.0258-2724.20190457
基金项目: 国家自然科学基金(U1637205)
详细信息
    作者简介:

    张亚锋(1983—),男,副研究员,研究方向为材料表面与界面、摩擦学,E-mail:studentzyf1@163.com

  • 中图分类号: TH117.1

Strain Rate Sensitivity of Porous Cotton-Phenolic Bearing Retainer

  • 摘要: 为了分析研究多孔棉布-酚醛轴承保持架的应变速率敏感性,使用纳米压痕仪测量其在应变速率为0.01~ 0.05 s−1时的硬度和弹性模量,通过Kelvin-Voigt模型对材料的黏弹性进行分析,研究了材料在不同应变速率下的应变硬化效应和应变局部软化效应. 研究结果表明:随着应变速率提高,多孔棉布-酚醛材料的硬度和弹性模量先增加后减小;当应变速率从0.01 s−1增加到0.05 s−1,多孔棉布-酚醛材料硬度和弹性模量的增加与材料的应变硬化现象有关;当应变速率从0.05 s−1增加到0.30 s−1,蠕变位移显著增加,接触刚度快速降低,形变以热的形式消耗在压头与材料的接触界面,压头接触区材料从黏弹性向黏性转变,局部材料黏度降低,硬度和弹性模量快速减小;多孔棉布-酚醛的硬度和弹性模量随应变速率的变化是应变硬化效应和应变局部软化效应竞争的结果.

     

  • 图 1  硬度和弹性模量随压入深度的变化

    Figure 1.  Variation of hardness and elastic modulus with depth

    图 2  硬度和弹性模量随应变速率的变化

    Figure 2.  Variation of hardness and elastic modulus with strain rates

    图 3  不同应变速率下的载荷-压入深度曲线

    Figure 3.  Typical load-pressing depth under different strain rates

    图 4  不同应变速率下的蠕变位移

    Figure 4.  Length of creep under different strain rates

    图 5  不同应变速率下压入深度的变化情况

    Figure 5.  Depth curves under different strain rates during indentation

    图 6  不同应变速率下的接触刚度

    Figure 6.  Contact stiffness under different strain rates

    图 7  不同应变速率下的相位角变化

    Figure 7.  Phase angles of the porous cotton-phenolic under different strain rates

  • 黄发荣, 焦杨声. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003: 1-27.
    伊廷会. 高性能酚醛树脂改性研究进展[J]. 化工进展,2001,20(9): 13-16.

    YI Tinghui. Advance in the modifying research of high performance phenolic resin[J]. Chemical Industry and Engineering Progress, 2001, 20(9): 13-16.
    侯海周,胡毅亭,彭金华. 酚醛层压材料的冲击力学行为及本构模型[J]. 爆炸与冲击,2015,35(6): 858-863.

    HOU Haizhou, HU Yiting, PENG Jinhua. Dynamic behavior and constitutive model of phenolic cotton fabric material under impact loading[J]. Explosion and Shock Waves, 2015, 35(6): 858-863.
    BERTRAND P A. Oil absorption into cotton-phenolic material[J]. Journal of Materials Research, 1993, 8(7): 1749-1757. doi: 10.1557/JMR.1993.1749
    孙小波,王枫,葛世军,等. 航天长寿命轴承润滑技术[J]. 轴承,2012,3: 24-29.

    SUN Xiaobo, WANG Feng, GE Shijun, et al. Long life lubricating technology for bearing used in aerospace[J]. Bearing, 2012, 3: 24-29.
    张迪,王超,卿涛,等. 空间用多孔聚合物轴承保持架材料研究进展[J]. 机械工程学报,2018,54(9): 17-26.

    ZHANG Di, WANG Chao, QING Tao, et al. Research progress of porous polymide bearing retainer materials used in aerospace[J]. Journal of Mechanical Engineering, 2018, 54(9): 17-26.
    TRICK K A, SALIBA T E. Mechanisms of the pyrolysis of phenolic Resin in a carbon/phenolic composite[J]. Carbon, 1995, 33(11): 1509-1511. doi: 10.1016/0008-6223(95)00092-R
    KIM Y A, KAMIO S, TAJIRI T, et al. Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes[J]. Applied Physics Letters, 2007, 90(9): 27-67. doi: 10.1063/1.2710778
    黄俊钦,林有希. 耐高温改性酚醛树脂基复合摩擦材料研究进展[J]. 工程塑料应用,2014,42(1): 116-120.

    HUANG Junqin, LIN Youxi. Research progress on high temperature resistant modified phenolic resin matrix composite friction materials[J]. Engineering Plastics Application, 2014, 42(1): 116-120.
    王超,陈帅,张玉玲,等. 酚醛层压布管保持架高精密加工工艺改进[J]. 轴承,2017,12: 12-13.

    WANG Chao, CHEN Shuai, ZHANG Yuling, et al. Improvement on high precision progressing technology for cages made of phenolic cloth laminated tube[J]. Bearing, 2017, 12: 12-13.
    HEIMBS S, SCHMEER S, MIDDENDORF P. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures[J]. Composites Science and Technology, 2007, 67(13): 2827-2837. doi: 10.1016/j.compscitech.2007.01.027
    LI D S, LU Z X, JIANG N, et al. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression[J]. Composites Part B Engineering, 2011, 42(2): 309-317. doi: 10.1016/j.compositesb.2010.11.011
    张国尚,荆洪阳,徐连勇,等. 纳米压痕法研究80 Au/20 Sn焊料蠕变应力指数[J]. 焊接学报,2009,30(8): 73-76.

    ZHANG Guoshang, JING Hongyang, XU Lianyong, et al. Study of on the creep stress exponent of 80 Au/20 Sn solder by nanoindentation[J]. Transactions of the China Welding Institution, 2009, 30(8): 73-76.
    贾春楠,肖革胜,袁国政,等. 纳米压入法研究无铅焊料应变率敏感性[J]. 功能材料,2015,46(1): 1046-1050.

    JIA Chunnan, XIAO Gesheng, YUAN Guozheng, et al. Nanoindentation characterization of strain rate sensitivity of lead-free solders[J]. Journal of Functional Materials, 2015, 46(1): 1046-1050.
    OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583. doi: 10.1557/JMR.1992.1564
    NIX W D, GAO H. Indentation size effects in crystalline materials:a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425.
    周亮,姚英学. 微纳米尺度压痕硬度尺寸效应的研究进展[J]. 哈尔滨工业大学学报,2008,40(4): 597-602.

    ZHOU Liang, YAO Yingxue. Research development of hardness indentation size effect at micro/nano scale[J]. Journal of Harbin Institute of Technology, 2008, 40(4): 597-602.
    ALMASRI A H, VOYIADJIS G Z. Effect of strain rate on the dynamic hardness in metals[J]. Journal of Engineering Materials and Technology, 2007, 129(4): 505-512. doi: 10.1115/1.2744430
    王尧,朱晓莹,刘贵民. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性[J]. 金属学报,2017,53(2): 57-65.

    WANG Yao, ZHU Xiaoying, LIU Guimin. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers[J]. Acta Metallurgica Sinica, 2017,53(2): 57-65.
    ZHANG Y F, ZHENG J, YU J X et al. Impact of strain rate on the hardness and elastic modulus of human tooth enamel[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 78: 491-495.
    张伍连,丁辛,杨旭东. 机织建筑膜材料的广义Kelvin-Voigt蠕变模型[J]. 天津工业大学学报,2011,30(4): 19-22.

    ZHANG Wulian, DINTG Xin, YANG Xudong. General kelvin-voigt creep model of fabric architectural membrane[J]. Journal of TianJin Polytechnic University, 2011, 30(4): 19-22.
    SUN Y, SHI L P, ZHOU C L, et al. Preparation and properties of phenolic resin impregnated quartz fiber tile ablative composite[J]. Key Engineering Materials, 2016, 697(4): 28-32.
    张泰华. 微/纳米力学测试技术[M]. 北京: 科学出版社, 2013: 29-38.
    陈绪煌. 聚丙烯/茂金属催化乙烯-丙烯共聚物相结构的演变与性能[D]. 天津: 天津大学, 2007.
    魏无际. 高分子化学与物理基础[M]. 2版. 北京: 化学工业出版社, 2018: 218-242.
  • 加载中
图(7)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  220
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2020-02-16
  • 网络出版日期:  2021-03-23
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回