Experimental Investigation of Masonry Shear Strength Under Compression
-
摘要: 为避免现有砌体结构剪压复合作用下较为繁琐的双向控制强度测试模式,采用一种以单向加载替代传统双向加载的改进试验装置,借助试件角度旋转获取了不同应力比下砌体剪切滑移破坏、受拉破坏、受压破坏3种破坏形态;通过数值分析对试验现象进行对比验证,揭示了不同剪压复合应力状态下砌体抗剪强度的破坏规律;以0.2和0.6为界限采用三段式剪压相关曲线构建出不同应力条件下剪压复合强度破坏准则,以0.2为界限提出了砌体剪压复合受力状态下材料应力应变关系. 结果表明:改进试验方法简捷高效误差小,理论计算与试验结果之比的均值为1.07,变异系数为0.180;试验结果丰富了砌体材料本构关系,可为砌体结构破坏准则的完善与数值分析模型的构建提供理论依据.Abstract: To avoid the relatively cumbersome strength-testing methods for the existing masonry structures under the combined action of shear and compression, an improved test device substituting uniaxial loading for biaxial is provided to test masonry shear-compression strength under different stress ratios by means of angular rotation of specimen. Comparing the experimental phenomena and numerical analysis results, sliding failure, tensile failure and compression failure of masonry are presented and the failure criterion of shear-compression strength under different stress conditions is established by means of the three-stage shear compression correlation curve with turning points of 0.2 and 0.6, and the stress-strain relationship with turning points of 0.2 under the shear-compression state is proposed. Results show that the improved testing method is simple, efficient and small in error. The mean value of the ratio of theoretical calculation to test result is 1.07, and the coefficient of variation is 0.180. The testing results enrich the constitutive relationship of masonry material, which can provide a theoretical basis for the improvement of masonry failure criterion and the construction of numerical analysis model.
-
Key words:
- masonry /
- shear-compression strength /
- uniaxial loading /
- improved testing method /
- rotation angle
-
表 1 试件规格及测试结果
Table 1. Specimen specifications and test results
α/(°) 试件编号 尺寸(长/宽/
高)/mmFcr/kN Fu/kN σ/MPa fv/MPa S101 241/369/242 — 16.5 0.030 0.17 10.0 S102 242/370/244 — 15.7 0.0290 0.16 S103 240/370/242 — 14.4 0.026 0.15 S221 240/370/245 — 39.7 1.071 0.42 22.5 S222 238/365/244 — 28.9 0.127 0.31 S223 241/368/245 — 30.0 0.129 0.32 S451 243/369/243 32.6 93.8 0.740 0.74 45.0 S452 241/366/244 48.2 89.7 0.719 0.72 S453 240/370/245 42.5 105.1 0.837 0.84 S671 243/366/246 48.7 208.9 2.170 0.90 67.5 S672 238/368/244 61.5 223.3 2.356 0.98 S673 240/370/243 52.3 180.3 1.876 0.78 S801 244/370/242 78.9 338.8 3.696 0.65 80.0 S802 240/366/245 67.7 467.0 5.236 0.92 S803 240/370/241 57.9 374.3 4.151 0.73 注:“—”表示砌体试件开裂荷载无法捕捉,即“一裂即坏”. 表 2 抗剪强度比较
Table 2. Comparison of shear strengths
σ/fm $f_{\rm{v}}^{'} $ $f_{\rm{v}} $ $f_{\rm{v}}^{'} /f_{\rm{v}} $ 0 0.087 0.097 0.897 0.0040 0.149 0.119 1.252 0.0210 0.310 0.212 1.462 0.1380 0.837 0.853 0.981 0.3590 0.889 0.897 0.991 0.3890 0.976 0.914 1.068 0.6110 0.653 0.717 0.911 1.0000 0 0 1.000 $f_{\rm{v}}^{'} /f_{\rm{v}} $ 平均值 1.070 变异系数 0.180 -
信任,张春侠. 砌体结构双轴拉压应力强度试验研究[J]. 工程力学,2016,33(10): 183-188,196.XIN Ren, ZHANG Chunxia. Expeirmental research on masonry structure strength under biaxial tensile-compressive stress[J]. Engineering Mechanics, 2016, 33(10): 183-188,196. 苏启旺,孙玉平,赵世春. 基于震害的多层砌体结构抗震性能评估方法[J]. 西南交通大学学报,2011,46(1): 30-35.SU Qiwang, SUN Yuping, ZHAO Shichun. Seismic evaluation method of multi-storey masonry buildings based on earthquake damage[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 30-35. 中国建筑东北设计研究院有限公司砌体结构设计规范: GB 50003—2011[S]北京: 中国建筑工业出版社, 2011. XIN Ren, YAO Jitao, ZHAO Yan. Experimental research on masonry mechanics and failure under biaxial compression[J]. Structural Engineering & Mechanics, 2017, 61(1): 161-169. 张望喜,段连蕊,廖莎,等. 基于ABAQUS的砌体结构动力弹塑性时程分析[J]. 建筑结构,2016,46(1): 64-70,86.ZHANG Wangxi, DUAN Lianrui, LIAO Sha, et al. Dynamic elastic-plastic time-history analysis of masonry structure based on ABAQUS[J]. Building Structure, 2016, 46(1): 64-70,86. GABOR A, FERRIER E, JACQUELIN E, et al. Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels[J]. Construction and Building Materials, 2006, 20(5): 308-321. CHAIMOON K, ATTARD M M. Experimental and numerical investigation of masonry under three-point bending (in-plane)[J]. Engineering Structures, 2009, 31(1): 103-112. doi: 10.1016/j.engstruct.2008.07.018 于敬海,费添慧. 灰砂蒸压加气混凝土砌体剪压复合受力性能试验[J]. 天津大学学报(自然科学与工程技术版),2007,40(8): 983-989.YU Jinghai, FEI Tianhui. Experimental study on the shear-compression behavior of sand-lime-AAC masonry[J]. Journal of Tianjin University (Science and Technology), 2007, 40(8): 983-989. LIN K, TOTOEV Y Z, LIU H J, et al. Experimental characteristics of dry stack masonry under compression and shear loading[J]. Materials, 2015, 8(12): 8731. doi: 10.3390/ma8125489 RAHMAN A, UEDA T. Experimental investigation and numerical modeling of peak shear stress of brick masonry mortar joint under compression[J]. Journal of Materials in Civil Engineering, 2014, 26(9): 04014061 LOURENCO P B, BARROS J O, OLIVEIRA J T. Shear testing of stack bonded masonry[J]. Construction and Building Materials, 2004, 18(2): 125-132. 刘桂秋. 砌体结构基本受力性能的研究[D]. 长沙: 湖南大学, 2005. NAZAR M E, SINHA S N. Fatigue behaviour of interlocking grouted stabilised mud-fly ash brick masonry[J]. International Journal of Fatigue, 2007, 29(5): 953-961. doi: 10.1016/j.ijfatigue.2006.07.018 王庆霖. 无筋墙体的抗震剪切强度[C]//砌体结构研究论文集. 长沙: 湖南大学出版社, 1988: 109-121. MILOSEVIC J, LOPES M, GAGO A S, et al. Testing and modeling the diagonal tension strength of rubble stone masonry panels[J]. Engineering Structures, 2013, 52(jul.): 581-591. SOUSA R, SOUSA H, GUEDES J. Diagonal compressive strength of masonry samples—experimental and numerical approach[J]. Materials and Structures, 2013, 46(5): 765-786. doi: 10.1617/s11527-012-9933-z 蔡勇. 砌体在剪压复合作用下抗震抗剪强度分析[J]. 建筑结构,2011,41(2): 74-77.CAI Yong. Analysis on aseismic shear strength of masonry under shear-compression composite action[J]. Building Structure, 2011, 41(2): 74-77. 骆万康,李锡军. 砖砌体剪压复合受力动、静力特性与抗剪强度公式[J]. 重庆建筑大学学报,2000,22(4): 13-19.LUO Wankang, LI Xijun. Dynamic and static characteristics and shear strength formula of brick masonry under shear-compression composite force[J]. Journal of Chongqing Jianzhu University, 2000, 22(4): 13-19.