• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于交叉熵算法的电动车辆复合电源参数优化

戴朝华 刘洋 黄晨曦 赵舵 郭爱 陈维荣 刘楠

戴朝华, 刘洋, 黄晨曦, 赵舵, 郭爱, 陈维荣, 刘楠. 基于交叉熵算法的电动车辆复合电源参数优化[J]. 西南交通大学学报, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442
引用本文: 戴朝华, 刘洋, 黄晨曦, 赵舵, 郭爱, 陈维荣, 刘楠. 基于交叉熵算法的电动车辆复合电源参数优化[J]. 西南交通大学学报, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442
DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442
Citation: DAI Chaohua, LIU Yang, HUANG Chenxi, ZHAO Duo, GUO Ai, CHEN Weirong, LIU Nan. Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 839-846. doi: 10.3969/j.issn.0258-2724.20190442

基于交叉熵算法的电动车辆复合电源参数优化

doi: 10.3969/j.issn.0258-2724.20190442
基金项目: 国家重点研发计划(2017YFB1201003,2017YFB1201005)
详细信息
    作者简介:

    戴朝华(1973—),男,副教授,研究方向为新能源车辆,E-mail:daichaohua@swjtu.edu.cn

    通讯作者:

    赵舵(1975—),男,副教授,研究方向为智能优化算法,E-mail:zhaoduo@swjtu.edu.cn

  • 中图分类号: V221.3

Parameters Optimization for Hybrid Energy Storage System of Electric Vehicles Based on Cross-Entropy Algorithm

  • 摘要: 为了提升电动汽车动力性能、降低车辆成本,以复合电源成本和车辆电耗最小为目标,通过交叉熵(cross- entropy,CE)算法对车载复合电源的参数优化进行了研究. 首先,以某款纯电动汽车为研究对象,根据能量与功率性能指标确定锂离子电池和超级电容的容量范围;其次,选取复合电源成本和车辆电耗建立多目标优化函数,并在ADVISOR环境中搭建车辆仿真模型;接着,采用CE算法,通过种群的不断迭代,更新高斯概率密度函数的均值和方差,找到复合电源参数的Pareto最优解集;最后,从最优Pareto解集中选取典型的匹配参数,分析复合电源成本、车辆电耗和整车性能. 研究结果表明:在满足基本约束的前提下,得到了由100个解组成的Pareto最优解集. 与第二代非劣排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)比较,CE算法有更好的收敛性与分布性;复合电源成本平均降低了9.49%,车辆电耗平均降低了22.81%; 此外,城市道路循环工况(urban dynamometer driving schedule,UDDS)下车速误差最大值降低16.15%,整车动力性也有显著提升,百公里加速时间缩短7.81%,最高车速提升1.98%.

     

  • 图 1  整车拓扑结构

    Figure 1.  Vehicle topology

    图 2  工况车速需求

    Figure 2.  Speed requirements under working conditions

    图 3  Pareto前沿面

    Figure 3.  Pareto front

    图 4  不同优化算法的车速匹配

    Figure 4.  Speed matching of different optimization algorithms

    图 5  不同算法的锂离子电池SOC、温度及超级电容SOC

    Figure 5.  Lithium-ion battery SOC, supercapacitor SOC and temperature curve of different algorithms

    表  1  整车参数

    Table  1.   Vehicle parameters

    部件参数数值
    整车 总质量/kg 1 191
    长,宽,高/mm 4 410,1 750,1 000
    轴距/mm 2 600
    电机 最大功率/kW 75
    电压等级/V 320
    最大转速/(r•min−1 10 000
    最大转矩/(N•m) 200
    锂离子电池 单体电池额定电压/V 3.2
    单体电池额定容量/(A•h) 10~60
    能量密度/(W•h•kg−1 120
    超级电容 额定电压/V 2.5
    额定容量/F 1 000~3 500
    能量密度/(W•h•kg−1 6
    下载: 导出CSV

    表  2  整车循环工况功率需求

    Table  2.   Power requirements in driving cycle

    项目正(驱动)需求负(制动)需求
    总能量需求/kJ6 799−440.2
    循环中所占时间/h21.502.683
    平均功率需求/kW5.270−2.734
    峰值功率需求/kW39.70−8.942
    下载: 导出CSV

    表  3  不同算法优化结果比较

    Table  3.   Comparison of different algorithm optimization results

    项目CENSGA-II优化前
    最小车辆电耗/(kW•h) 2.241 8 2.125 1 7.140 1
    平均车辆电耗/(kW•h) 3.254 0 3.562 8 7.140 1
    最低电源成本/万元 8.311 1 9.432 8 16.080
    平均电源成本/万元 10.937 1 14.169 2 16.080
    锂离子电池DOD 0.061 0 0.086 0 0.154 0
    超级电容DOD 0.426 1 0.465 2
    制动能量回收/kJ −6 198.6 −5 469.1 −5 331.2
    放电效率 0.995 2 0.989 5 0.922 0
    下载: 导出CSV

    表  4  整车动力性能比较

    Table  4.   Comparison of vehicle dynamic performance

    项目CE 算法优化NSGA-II 算法优化未优化
    最高车速/(km•h−1157.55 (提高 14.64%)154.49 (提高 12.41%)137.43
    15 km/h 最大爬坡度/%35(提高 25.00%)33(提高 17.85%)28
    5 s 能达到的最远距离/m195.8 (提高 3.87%)188.9 (提高 0.21%)188.5
    0~50 km/h 加速时间/s5.0 (提高 5.66%)5.2 (提高 1.88%)5.3
    50~80 km/h 加速时间/s5.8 (提高 48.67%)6.0 (提高 46.9%)11.3
    0~100 km/h 加速时间/s17.7 (提高 11.94%)19.2 (提高 4.47%)20.1
    下载: 导出CSV
  • 马建,刘晓东,陈轶嵩,等. 中国新能源汽车产业与技术发展现状及对策[J]. 中国公路学报,2018,31(8): 1-19. doi: 10.3969/j.issn.1001-7372.2018.08.001

    MA Jian, LIU Xiaodong, CHEN Yisong, et al. Current status and countermeasures for China ’s new energy automobile industry and technology development[J]. China Journal of Highway and Transport, 2018, 31(8): 1-19. doi: 10.3969/j.issn.1001-7372.2018.08.001
    IANNUZZI D, CICCARELLI F, LAURIA D. Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networks[J]. Transportation Research Part C, 2011, 21(1): 321-337.
    AHMADI S, BATHAEE S M T. Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system:fuzzy logic and operating mode control strategies[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12512-12521. doi: 10.1016/j.ijhydene.2015.06.160
    GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/ supercapacitor hybrid energy storage system for electric vehicles[C]//Intelligent Control and Automation. [S.l.]: IEEE, 2016: 98-102.
    杨阳,崔维隆,苏岭,等. 一种新型混合动力传动系统匹配设计与性能仿真[J]. 中国公路学报,2014,27(9): 111-118. doi: 10.3969/j.issn.1001-7372.2014.09.015

    YANG Yang, CUI Weilong, SU Ling, et al. Matching design and performance simulation of a new hybrid powertrain[J]. China Journal of Highway and Transport, 2014, 27(9): 111-118. doi: 10.3969/j.issn.1001-7372.2014.09.015
    HU X, MURGOVSKI N, JOHANNESSON L M, et al. Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1193-1205. doi: 10.1109/TITS.2013.2294675
    胡建军,郑勇,胡志华,等. 纯电动汽车复合储能系统参数匹配及控制策略[J]. 中国公路学报,2018,31(3): 142-150. doi: 10.3969/j.issn.1001-7372.2018.03.016

    HU Jianjun, ZHNEG Yong, HU Zhihua, et al. Parameter matching and control strategy of hybrid energy storage system for pure electric vehicle[J]. China Journal of Highway and Transport, 2018, 31(3): 142-150. doi: 10.3969/j.issn.1001-7372.2018.03.016
    于远彬,王庆年,王加雪,等. 混合动力汽车车载复合电源参数匹配及其优化[J]. 吉林大学学报(工学版),2008,38(4): 764-768.

    YU Yuanbin, WANG Qingnian, WANG Jiaxue, et al. Parameter matching and optimization of hybrid vehicle power supply for hybrid electric vehicle[J]. Journal of Jilin University (Engineering Edition), 2008, 38(4): 764-768.
    王伟达,王言子,项昌乐,等. 混合动力车制动工况分析与储能装置参数匹配[J]. 哈尔滨工业大学学报,2014,46(9): 74-79. doi: 10.11918/hitxb20140913

    WANG Weida, WANG Yanzi, XIANG Changle, et al. Analysis of brake condition and parameter matching of hybrid energy storage system for hybrid electric vehicles[J]. Journal of Harbin Institute of Technology, 2014, 46(9): 74-79. doi: 10.11918/hitxb20140913
    朱曰莹,赵桂范,杨娜,等. 电动汽车动力系统参数匹配及优化[J]. 哈尔滨工业大学学报,2013,45(7): 90-95. doi: 10.11918/j.issn.0367-6234.2013.07.017

    ZHU Yueying, ZHAO Guifan, YANG Na, et al. Parameters match and optimization for the drive system of electric vehicle[J]. Journal of Harbin Institute of Technology, 2013, 45(7): 90-95. doi: 10.11918/j.issn.0367-6234.2013.07.017
    WANG Q, FRANK A A. Plug-in HEV with CVT:configuration,control,and its concurrent multi-objective optimization by evolutionary algorithm[J]. International Journal of Automotive Technology, 2014, 15(1): 103-115. doi: 10.1007/s12239-014-0012-z
    王庆年, 王光平, 王鹏宇, 等. 基于成本优化的插电式混合动力参数匹配[J]. 吉林大学学报(工学版), 2016(2): 340-347.

    WANG Qingnian, WANG Guangping, WANG Pengyu, et al. Parameter matching for plug-in hybrid electric vehicle based on cost optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2016(2): 340-347.
    WU X, CAO B, LI X, et al. Component sizing optimization of plug-in hybrid electric vehicles[J]. Applied Energy, 2011, 88(3): 799-804. doi: 10.1016/j.apenergy.2010.08.018
    邓涛,林椿松,李亚南,等. 采用NSGA-Ⅱ算法的混合动力能量管理控制多目标优化方法[J]. 西安交通大学学报,2015,49(10): 143-150. doi: 10.7652/xjtuxb201510023

    DENG Tao, LING Chunsong, LI Yanan, et al. A multi-objective optimization method for energy management control of hybrid electric vehicles using NSGA-II algorithm[J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 143-150. doi: 10.7652/xjtuxb201510023
    周放,宋传学,梁天唯,等. 采用NSGA-Ⅱ算法的车载复合电源参数匹配[J]. 吉林大学学报(工学版),2017,47(5): 1336-1343.

    ZHOU Fang, SONG Chuanxue, LIANG Tianwei, et al. Parameter matching of on-board hybrid energy storage system using NSGA-Ⅱ algorithm[J]. Journal of Jilin University (Engineering Edition), 2017, 47(5): 1336-1343.
    宋传学,周放,肖峰,等. 基于凸优化的车载复合电源参数匹配[J]. 机械工程学报,2017,53(16): 44-51. doi: 10.3901/JME.2017.16.044

    SONG Chuanxue, ZHOU Fang, XIAO Feng, et al. Parameter matching of on-board hybrid energy storage system based on convex optimization method[J]. Journal of Mechanical Engineering, 2017, 53(16): 44-51. doi: 10.3901/JME.2017.16.044
    田文奇, 和敬涵, 姜久春, 等. 基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化[J]. 电网技术, 2012(11): 25-29.

    TIAN Wenqi, HE Jinghan, JIANG Jiuchun, et al. Multi-objective optimization of charging dispatching for electric vehicle battery swapping station based on adaptive mutation particle swarm optimization[J]. Power System Technology, 2012(11): 25-29.
    DE BOER P T, KROESE D, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67. doi: 10.1007/s10479-005-5724-z
    袁义悦. 基于ADVISOR二次开发的车载复合电源参数匹配研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    MARANO V, ONORI S, GUEZENNEC Y, et al. Lithium-ion batteries life estimation for plug-in hybrid electric vehicles[C]//Vehicle Power and Propulsion Conference, 2009. [S.l.]: IEEE, 2009: 536-54.
    DUO Z, CHENXI H, QICHAO T. CEGA: research on improved multi-objective CE optimization algorithm[C]//37th Chinese Control Conference. [S.l.]: IEEE, 2018: 2463-2467.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  339
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-10-18
  • 网络出版日期:  2020-01-21
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回