• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

变微分模态分解罚参量选择方法与时变系统识别

靳行 林建辉 陈谢祺

靳行, 林建辉, 陈谢祺. 变微分模态分解罚参量选择方法与时变系统识别[J]. 西南交通大学学报, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357
引用本文: 靳行, 林建辉, 陈谢祺. 变微分模态分解罚参量选择方法与时变系统识别[J]. 西南交通大学学报, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357
JIN Hang, LIN Jianhui, CHEN Xieqi. Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357
Citation: JIN Hang, LIN Jianhui, CHEN Xieqi. Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 672-680. doi: 10.3969/j.issn.0258-2724.20190357

变微分模态分解罚参量选择方法与时变系统识别

doi: 10.3969/j.issn.0258-2724.20190357
基金项目: 四川省科技支撑计划项目(2016JY0047)
详细信息
    作者简介:

    靳行(1986—),男,博士研究生,研究方向为信号处理与机械故障诊断,E-mail:wzem007@gmail.com

    通讯作者:

    林建辉(1964—),男,教授,博士,研究方向为信号处理与机械故障诊断,E-mail:linjhyz@sina.com

  • 中图分类号: TH113.1;O322

Penalty Parameter Selection Method for Variational Mode Decomposition and Time-Varying System Identification

  • 摘要: 针对变微分模态分解(variational mode decomposition,VMD)罚参量会对分解结果产生影响的问题,提出一种基于数据驱动的VMD罚参量选择方法.该方法首先通过傅里叶变换的主频峰值确定罚参量;然后调整层数参量,获得有限个固有模式分量,通过对比不同层数参量时所得固有模式分量的固有频率与阻尼比变化,剔除伪分量;最后对真实固有模式分量进行希尔伯特变换,用于识别时变系统的瞬时频率. 为证明所提方法对时变系统识别的有效性和准确性,分别对具有时变刚度的结构系统和柴油发动机的时变做功过程进行研究,将所提方法结果与经验模态分解方法结果进行比较. 比较结果表明,当罚参数取值是信号最大幅值的1.5~16.0倍时VMD分解结果最优,所提方法可以更准确地识别瞬时频率,在工程应用中的能够更有效地对系统瞬时频率进行识别.

     

  • 图 1  时变系统识别方法的方法流程

    Figure 1.  Flowchart of identification method for time-varying systems

    图 2  源信号与VMD分解后BIMF时域对比

    Figure 2.  Time domain comparison of BIMF after source signal decomposition and VMD decomposition

    图 3  源信号与VMD分解后BIMF频率对比

    Figure 3.  Comparison of BIMF frequency between source signal and VMD decomposition

    图 4  罚参量$\alpha $对分解结果影响

    Figure 4.  Effects of penalty parameter $\alpha $ on decomposition results

    图 5  频率误差小于1%时所需$\alpha $的大小统计盒

    Figure 5.  Box diagram of $\alpha $ needed when the frequency error is less than 1%

    图 6  4-DOF数值模型

    Figure 6.  4-DOF numerical model

    图 7  DOF3上非线性信号与线性信号

    Figure 7.  Nonlinear and linear signals on DOF3

    图 8  非线性模型BIMF分量的固有频率与阻尼变化

    Figure 8.  Natural frequency and damping change of BIMF component in nonlinear model

    图 9  数值模型识别时频谱与理论频率

    Figure 9.  Identification of time-frequency spectrum and theoretical frequency by numerical model

    图 10  EMD确定瞬时频率

    Figure 10.  The instantaneous frequency of EMD

    图 11  柴油机振动测点示意

    Figure 11.  Vibration measurement points for diesel engines

    图 12  750 rpm柴油机振动信号

    Figure 12.  Curves of vibration signals of 750 rpm diesel engine

    图 13  750 rpm柴油振动稳态图

    Figure 13.  Steady vibration of 750 rpm diesel engine

    图 14  750 rpm柴油机振动VMD瞬时能量谱

    Figure 14.  Instantaneous energy spectrum of 750 rpm diesel engine vibration using VMD

    图 15  750 rpm柴油机振动EMD瞬时能量谱

    Figure 15.  Instantaneous energy spectrum of 750 rpm diesel engine vibration using EMD

  • NI P, LI J, HAO H, et al. Time-varying system iden-tification using variational mode decomposition[J]. Structural Control and Health Monitoring, 2018, 25(6): e2175.1-e2175.20. doi: 10.1002/stc.2175
    BAO Y, SHI Z, BECK J L, et al. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations:identification of time-varying cable tension forces[J]. Structural Control & Health Monitoring, 2016, 24(3): e1889.1-e1889.17.
    SPIRIDONAKOS M D, FASSOIS S D. Parametric identification of a time-varying structure based on vector vibration response measurements[J]. Mechanical Systems & Signal Processing, 2009, 23(6): 2029-2048.
    WU Zhaohua, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    陈双喜,林建辉,陈建政. 基于改进的EMD方法提取车辆-轨道垂向耦合系统动态特性[J]. 振动与冲击,2011(8): 212-216. doi: 10.3969/j.issn.1000-3835.2011.08.042

    CHEN Shuangxi, LIN Jianhui, CHEN Jianzheng. Dynamic characteristics extraction of vehicle-track vertically coupling system based on improved EMD[J]. Journal of Vibration and Shock, 2011(8): 212-216. doi: 10.3969/j.issn.1000-3835.2011.08.042
    李康强,冯志鹏. 基于EMD和能量算子的模态参数识别在行星齿轮箱中的应用[J]. 振动与冲击,2018(8): 1-8.

    LI Kangqiang, FENG Zhipeng. Modal parameter identification based on empirical mode decomposition and energy operator for planetary gearboxes[J]. Journal of Vibration and Shock, 2018(8): 1-8.
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    杨华,陈云良,徐永,等. 基于VMD-HHT方法的水电机组启动过渡过程振动信号分析研究[J]. 工程科学与技术,2017,49(2): 92-99.

    YANG Hua, CHEN Yunliang, XU Yong, et al. Analysis of the hydropower unit vibration signal in the start transient process based on VMD-HHT method[J]. Advanced Engineering Sciences, 2017, 49(2): 92-99.
    赵岩,朱均超,张宝峰,等. 基于VMD与Hilbert谱的旋转机械碰摩故障诊断方法[J]. 振动、测试与诊断,2018,38(2): 381-386,425.

    ZHAO Yan, ZHU Junchao, ZHANG Baofeng, et al. Rub-impact fault diagnosis of rotating machinery based on VMD and Hilbert spectrum[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(2): 381-386,425.
    赵昕海,张术臣,李志深,等. 基于VMD的故障特征信号提取方法[J]. 振动、测试与诊断,2018,38(1): 11-19,202.

    ZHAO Xinhai, ZHANG Shuchen, LI Zhishen, et al. Application of new denoising method based on VMD in fault feature extraction[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(1): 11-19,202.
    靳行,林建辉,邓韬. 变微分分解在地铁车辆熔断器非短路损坏故障分析[J]. 中国测试,2019,45(3): 145-150.

    JIN Hang, LIN Jianhui, DENG Tao. Damage fault analysis for subway vehicle fuse of non-short circuit based on VMD method[J]. China Measurement & Test, 2019, 45(3): 145-150.
    YU S, MA J. Complex variational mode decomposition for slop-preserving denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(1): 586-597.
    YANG J N, LEI Y, PAN S, et al. System identification of linear structures based on Hilbert-Huang spectral analysis[J]. Earthquake Engineering & Structural Dynamics, 2010, 32(10): 1533-1554.
  • 加载中
图(15)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  339
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 修回日期:  2019-07-11
  • 网络出版日期:  2020-04-01
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回