Transient Impact Behavior Analysis of Rail Broken Gap on High-Speed Continuous Welded Rail
-
摘要: 无缝线路钢轨焊缝及其热影响区在温度力作用下可能发生钢轨折断形成断缝. 为了研究钢轨折断对列车运营安全的影响,对轮轨接触受力特性及其材料高频动态响应进行了分析. 首先,建立了ANSYS/LSDYNA三维轮轨瞬态滚动接触有限元模型;然后,根据不同速度轮轨力时域响应规律,选择了合适的模型计算工况,并且通过计算轮轨接触受力特性和材料高频动态响应,分析了车轮跨越断缝的安全问题;最后,通过小波变换获取了车轮跨越断缝时轮轨力的频域分布. 结果表明:断缝处轮轨高频冲击力峰值随断缝长度变化先减小后增大,转折点处断缝长度与行车速度负相关;车轮通过断缝时,钢轨最大剪切应力超过材料破坏极限,易导致钢轨材料脆断;轮轨力时频图中存在两个特殊频率成分,分别对应高频冲击荷载(1 500 Hz左右)及二次冲击荷载(450 Hz左右),断缝长度对轮轨力频域分布影响较小.Abstract: The rail of seamless track may break and form a broken gap at the weld and its heat affected zone under temperature force. In order to study the influence of rail broken gap on train operation, the wheel-rail contact force characteristics and the high-frequency dynamic response of the material is analyzed. First, the ANSYS/LSDYNA three-dimensional wheel-rail transient rolling contact finite element model was established; then, according to the time-domain response of wheel-rail forces at different speeds, the appropriate calculation conditions are selected, and the safety issue in the case of the wheel crossing the broken gap is analyzed by calculating the wheel-rail contact force and the high-frequency dynamic response of the material; finally, when the wheel crosses the gap, the frequency-domain distribution of the wheel-rail force is obtained by wavelet transform. The results show that the peak value of the high-frequency impact force decreases at first and then increases as the length of the rail broken gap increases. The length of the broken gap at the turning point is inversely correlated to the train speed; when the wheel passes through the gap, the maximum shear stress of the rail exceeds the material failure limit, which may cause the brittle fracture of the rail material; there are two special frequency components in the time-frequency diagram of the wheel-rail force, which respectively correspond to the high-frequency impact load (about 1 500 Hz) and secondary impact load (about 450 Hz); the gap length has little effect on the frequency-domain distribution of the wheel-rail force.
-
表 1 模型参数
Table 1. Model parameters
簧上质
量/kg车辆一系悬挂 簧下质量 车轮、钢轨材料 橡胶垫 刚度系数/
(MN•m−1)阻尼/
(kN•s•m−1)车轮质
量/kg轮对附属部件质量/kg 弹性模
量/GPa密度/
(kg•m−3)泊松比 阻尼常数 刚度系数/
(MN•m−1)阻尼/
(kN•s•m−1)8 000 0.88 4 656 340 210 7 790 0.3 10−4 22.00 200 -
杨荣山. 钢轨接头应力的有限元分析[J]. 西南交通大学报,2003,38(3): 314-317.YANG Rongshan. Finite element analysis of stress in rail Joint[J]. Journal of Southwest Jiaotong University, 2003, 38(3): 314-317. WEN Zefeng, JIN Xuesong, ZHANG Weihua. Contact-impact stress analysis of rail joint region using the dynamic finite element method[J]. Wear, 2005, 258(7): 1301-1309. 郭俊,温泽峰,金学松,等. 钢轨三维弹塑性滚动接触应力[J]. 西南交通大学学报,2007,42(3): 262-268. doi: 10.3969/j.issn.0258-2724.2007.03.002GUO Jun, WEN Zefeng, JIN Xuesong, et al. Three-dimensional elastic-plastic rolling contact stresses in rail[J]. Journal of Southwest Jiaotong University, 2007, 42(3): 262-268. doi: 10.3969/j.issn.0258-2724.2007.03.002 JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic loads[J]. Railway Engineering Journal, 1974, 3(1): 2-16. 练松良,刘富. 轨道刚度变化对轮轨冲击荷载的动力影响[J]. 同济大学学报(自然科学版),2002,30(4): 427-430.LIAN Songliang, LIU Fu. Effect of track stiffness uneven on wheel/rail impact load[J]. Journal of Tongji University (Natural Science), 2002, 30(4): 427-430. 蒋金洲,卢耀荣. 客运专线钢轨断缝允许值研究[J]. 中国铁道科学,2007,28(6): 25-29. doi: 10.3321/j.issn:1001-4632.2007.06.005JIANG Jinzhou, LU Yaorong. Study on the allowable width of rail broken gap for passenger dedicated line[J]. China Railway Science, 2007, 28(6): 25-29. doi: 10.3321/j.issn:1001-4632.2007.06.005 温泽峰,金学松,张卫华,等. 钢轨轨缝接触-冲击的有限元分析[J]. 摩擦学学报,2003,23(3): 240-244. doi: 10.3321/j.issn:1004-0595.2003.03.016WEN Zefeng, JIN Xuesong, ZHANG Weihua, et al. Finite element analysis of contact-impact of wheel/rail at rail gap[J]. Tribology, 2003, 23(3): 240-244. doi: 10.3321/j.issn:1004-0595.2003.03.016 李定清. 轮轨垂直相互动力作用及其动力响应[J]. 铁道学报,1987,9(1): 3-10.LI Dingqing. Wheel/track vertical dynamic action and responses[J]. Journal of the China Railway Society, 1987, 9(1): 3-10. CAI Wu, WEN Zefeng, JIN Xuesong, et al. Dynamic stress analysis of rail joint with height difference defect using finite element method[J]. Engineering Failure Analysis, 2007, 14(8): 1488-1499. doi: 10.1016/j.engfailanal.2007.01.007 徐玉坡. 重载铁路加强型钢轨接头研究[J]. 中国铁道科学,2017,38(1): 22-28. doi: 10.3969/j.issn.1001-4632.2017.01.04XU Yupo. Research on improved rail joint for heavy haul railway[J]. China Railway Science, 2017, 38(1): 22-28. doi: 10.3969/j.issn.1001-4632.2017.01.04 赵鑫,温泽峰,王衡禹,等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报,2013,49(18): 1-7. doi: 10.3901/JME.2013.18.001ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. doi: 10.3901/JME.2013.18.001 中铁第四勘察设计院集团有限公司. 铁路无缝线路设计规范: TB10015—2012[S]. 北京: 中国铁道出版社, 2013. 中华人民共和国铁道部. 高速动车组整车试验规范: 铁运[2008]28号[S]. 北京: 中华人民共和国铁道部, 2008. 田越,程育仁,刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学,1992,13(2): 34-42.TIAN Yue, CHENG Yuren, LIU Xuewen. Studys on the dynamic behavior of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13(2): 34-42.