• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速动车组车轮踏面磨耗特征分析

徐凯 李芾 安琪 毛文慧

徐凯, 李芾, 安琪, 毛文慧. 高速动车组车轮踏面磨耗特征分析[J]. 西南交通大学学报, 2021, 56(1): 92-100. doi: 10.3969/j.issn.0258-2724.20190266
引用本文: 徐凯, 李芾, 安琪, 毛文慧. 高速动车组车轮踏面磨耗特征分析[J]. 西南交通大学学报, 2021, 56(1): 92-100. doi: 10.3969/j.issn.0258-2724.20190266
XU Kai, LI Fu, AN Qi, MAO Wenhui. Wheel Tread Wear Characteristics of High-Speed Electric Multi-Units[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 92-100. doi: 10.3969/j.issn.0258-2724.20190266
Citation: XU Kai, LI Fu, AN Qi, MAO Wenhui. Wheel Tread Wear Characteristics of High-Speed Electric Multi-Units[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 92-100. doi: 10.3969/j.issn.0258-2724.20190266

高速动车组车轮踏面磨耗特征分析

doi: 10.3969/j.issn.0258-2724.20190266
基金项目: 国家重点研发计划(2016YFB1200501)
详细信息
    作者简介:

    徐凯(1989—),男,博士,研究方向为机车车辆设计理论,E-mail:xukai8502998@163.com

    通讯作者:

    李芾(1956—),男,教授,博士,研究方向为轨道交通车辆结构及动力学分析,E-mail:lifu@home.swjtu.edu.cn

  • 中图分类号: V221.3

Wheel Tread Wear Characteristics of High-Speed Electric Multi-Units

  • 摘要: 为研究不同类型高速动车组车辆车轮踏面磨耗特征,探寻车轮发生磨耗后车辆运行性能的演变,以运行在武广客专上的CRH380A和CRH380B型动车组为研究对象,在线路数据统计的基础上,基于SIMPACK建立的高速动车组模型和编制的轮轨磨耗程序,对两类动车组车辆在一个镟修周期内的车轮磨耗特性及其对车辆运行性能的影响进行分析. 结果表明,该线路上运营的动车组车辆车轮磨耗特征主要表现为踏面凹槽磨耗,且CRH380A型动车组车轮踏面磨耗程度更为严重;在一个镟修周期内,由于车辆设计理念的差异,CRH380A型动车组车轮磨耗特征表现为磨耗范围较窄但磨耗深度较大,凹槽磨耗较为明显,而CRH380B型动车组则表现为磨耗范围较宽但磨耗深度较小,磨耗较为均匀;在运行2.5 × 105 km里程内,新轮状态下的CRH380A型动车组运行稳定性明显优于CRH380B型动车组,但在运营里程超过1.0 × 105 km后,由于受到车轮磨耗的影响,运行稳定性较CRH380B型动车组恶劣;同时,CRH380A型动车组车体最大振动加速度和平稳性指标分别为0.52 m/s2和2.26,均优于CRH380B型动车组的0.58 m/s2和2.38,但CRH380A型动车组脱轨系数和轮重减载率均为0.35,均大于CRH380B型动车组的0.14和0.28. 因此,在整个运行周期内,CRH380A型动车组车辆运行平稳性优于CRH380B型动车组,但运行安全性较CRH380B型动车组恶劣.

     

  • 图 1  踏面磨耗演变规律

    Figure 1.  Evolution of tread wear

    图 2  高速动车组动力学模型

    Figure 2.  High-speed EMU dynamics model

    图 3  Archard磨耗模型

    Figure 3.  Archard wear model

    图 4  Archard磨耗系数

    Figure 4.  Archard wear coefficient

    图 5  磨耗预测方法

    Figure 5.  Method of wear prediction

    图 6  磨耗预测程序界面

    Figure 6.  Interface of wear prediction program

    图 7  车轮磨耗深度仿真与实测对比

    Figure 7.  Comparison between simulation and actual measurement of wheel wear depth

    图 8  车轮磨耗性能对比

    Figure 8.  Comparison of wheel wear

    图 9  车辆运行稳定性对比

    Figure 9.  Comparison of vehicle running stability

    图 10  车辆运行平稳性对比

    Figure 10.  Comparison of vehicle running comfort

    图 11  车辆运行安全性对比

    Figure 11.  Comparison of vehicle running safety

    表  1  两类动车组车辆主要参数设置

    Table  1.   Main parameters of two types of EMU

    类型车辆型面轴箱纵向定位刚度/(MN•m−1轴箱横向定位刚度/(MN•m−1抗蛇行减振器节点刚度/(MN•m−1
    CRH380ALMA135.58.85
    CRH380BLMB7012.535.00
    下载: 导出CSV

    表  2  武广客运专线典型计算工况

    Table  2.   Typical calculation conditions of Wuhan–Guangzhou passenger dedicated line

    半径/
    km
    超高/
    mm
    缓和曲线
    长/m
    圆曲线
    长/m
    运行速度/
    (km•h−1
    所占比
    例/%
    直线30060
    12.0802204803001
    9.01003003203007
    8.01203402503008
    7.014536021030010
    5.51653602103007
    5.01203602103007
    下载: 导出CSV

    表  3  车辆运行性能仿真与实测结果对比

    Table  3.   Comparison between simulation and altual measurement of running performance

    项目构架横向加
    速度/(m•s−2
    车体横向加
    速度/(m•s−2
    车体垂向加
    速度/(m•s−2
    车体横向平
    稳性指标
    车体垂向平
    稳性指标
    仿真3.1550.5140.3162.1661.619
    实测4.0650.6050.3212.2011.658
    下载: 导出CSV
  • 徐凯,李芾,李东宇,等. 动车组的轮轨型面匹配关系[J]. 西南交通大学学报,2017,52(2): 389-399. doi: 10.3969/j.issn.0258-2724.2017.02.024

    XU Kai, LI Fu, LI Dongyu, et al. Wheel-rail profile matching relationship of EMU train[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 389-399. doi: 10.3969/j.issn.0258-2724.2017.02.024
    邓建辉,刘启跃,王飞龙,等. 车速对钢轨接触疲劳伤损的影响及高速线路钢轨选用[J]. 钢铁钒钛,2006,27(3): 48-54. doi: 10.3969/j.issn.1004-7638.2006.03.011

    DENG Jianhui, LIU Qiyue, WANG Feilong, et al. Influence of train velocity on rail contact fatigue damage and how to select rail for high-speed[J]. Iron Steel Vanadium Titanium, 2006, 27(3): 48-54. doi: 10.3969/j.issn.1004-7638.2006.03.011
    马良民. 高速铁路钢轨打磨技术研究与应用[J]. 铁道建筑,2011(5): 114-116. doi: 10.3969/j.issn.1003-1995.2011.05.037

    MA Liangmin. Research on grinding technique and its application in high-speed railway[J]. Railway Engineering, 2011(5): 114-116. doi: 10.3969/j.issn.1003-1995.2011.05.037
    董孝卿,王悦明,王林栋,等. 高速动车组车轮踏面镟修策略研究[J]. 中国铁道科学,2013,34(1): 88-94. doi: 10.3969/j.issn.1001-4632.2013.01.13

    DONG Xiaoqin, WANG Yueming, WANG Lindong, et al. Research on the reprofiling strategy for the wheel tread of high-speed EMU[J]. China Railway Science, 2013, 34(1): 88-94. doi: 10.3969/j.issn.1001-4632.2013.01.13
    郑敏,曲政,孙强,等. 兰新二线CRH5型动车组异常振动原因分析及解决措施[J]. 铁道车辆,2014,35(4): 15-21. doi: 10.3969/j.issn.1002-7602.2014.04.005

    ZHENG Min, QU Zheng, SUN Qiang, et al. Analysis of causes to abnormal vibration of CRH5 multiple units on Lanxin 2nd line and measure for solution[J]. Rolling Stock, 2014, 35(4): 15-21. doi: 10.3969/j.issn.1002-7602.2014.04.005
    XU KAI, FENG Zheng, WU Hao, et al. Investigating the influence of rail grinding on stability,vibration,and ride comfort of high-speed EMUs using multi-body dynamics modelling[J]. Vehicle System Dynamics, 2019, 57(11): 1621-1642.
    DIRKS B, ENBLOM R. Prediction model for wheel profile wear and rolling contact fatigue[J]. Wear, 2011, 271(1): 210-217.
    SAWLEY K, WU H. The formation of hollow-worn wheels and their effect on wheel/rail interaction[J]. Wear, 2005, 258(7/8): 1179-1186.
    SAWLEY K, URBAN C, WALKER R. The effect of hollow-worn wheels on vehicle stability in straight track[J]. Wear, 2005, 258(7): 1100-1108.
    刘韦,马卫华,罗世辉,等. 高速列车车轮磨耗引起的轮轨接触非对称问题研究[J]. 振动与冲击,2013,32(13): 128-132. doi: 10.3969/j.issn.1000-3835.2013.13.024

    LIU Wei, MA Weihua, LUO Shihui, et al. Wheel/rail unsymmetrical contact of a high-speed train due to wheel wear[J]. Journal of Vibration and Shock, 2013, 32(13): 128-132. doi: 10.3969/j.issn.1000-3835.2013.13.024
    黄照伟. 车轮磨耗及其对车辆动力学性能的影响[D]. 成都: 西南交通大学, 2012.
    苟立波. 基于数据库的高速动车组车轮磨耗跟踪研究[D]. 北京: 北京交通大学, 2011.
    马明阳. 高速列车车轮磨耗预测及关键影响因素仿真分析[D]. 北京: 中国铁道科学研究院, 2016.
    金学松,沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报,2001,23(2): 92-108. doi: 10.3321/j.issn:1001-8360.2001.02.019

    JIN Xuesong, SHEN Zhiyun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108. doi: 10.3321/j.issn:1001-8360.2001.02.019
    International Union of Railways. Testing and approval of railway vehicles from the point of view of their dynamic behaviour – safety-track fatigue-running behaviour: UIC 518-2009[S]. Paris: UIC, 2009.
    国家标准局. 铁道车辆动力学性能评定和试验鉴定规范: GB/T 5599—1985[S]. 北京: 中国标准出版社, 1985.
    ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448
    JENDEL T. Prediction of wheel profile wear-comparisons with field measurements[J]. Wear, 2002, 253(1): 89-99.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  393
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-08-21
  • 网络出版日期:  2019-09-04
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回