Separation-Reattachment Flows Characteristics of Rectangular High-Rise Buildings with Different Side Ratios
-
摘要: 为研究边界层紊流特性、断面长宽比和空间位置等因素与矩形高层建筑分离再附流动特性之间的关联,通过不同长宽比矩形建筑模型的同步测压试验,获取不同工况下的表面风压实测数据;分析了影响矩形建筑三维分离再附流动和分离区长度演化规律的多种因素,探讨了大尺度紊流下矩形高层建筑的非定常气动力与分离再附流动特性的内在关联;定量给出了平均分离区长度在竖向的分布规律. 研究结果表明:紊流风场的积分尺度与建筑特征尺寸的比值关系会影响分离再附流动和气动力特性的试验精准度,最大偏差可达约24%;边界层紊流的干扰导致分离剪切层曲率增大,加强了对分离区的卷夹作用,稳定再附将发生在长宽比为2时;平均分离区长度在竖向方向逐渐增大,并依据试验结果给出了高层建筑侧面风压取值的修正建议.Abstract: To study the influents of turbulence characteristics, side ratio, and spatial position on the separation-reattachment flows of rectangular high-rise buildings, Firstly, the measured data of surface pressure under different conditions were obtained by synchronous pressure tests of rectangular building models with different side ratios. Secondly, various factors affecting the evolution of the three-dimensional separation-reattachment flows and the mean separation length of rectangular high-rise buildings were analyzed, the intrinsic correlation between the unsteady aerodynamic forces and the separation-reattachment flows of rectangular buildings under large-scale turbulences was discussed. Finally, the mean separation lengths in the vertical direction were given quantitatively. The results show that the ratio of the turbulence integral scale to the feature size of the building affects the test accuracy of separation-reattachment flows and aerodynamic characteristics, with a maximum deviation of about 24%. The interference of incoming turbulence causes the curvature of the separated shear layers to increase, and enhances the entrainment of the uniform-shear flows in the separation zone, the stable reattachment will occur when the side ratio is 2. The mean separation length of the rectangular high-rise building gradually increases in the vertical direction, correction suggestions for predicting the lateral wind pressure of high-rise buildings are also given based on the test results.
-
表 1 不同长宽比矩形高层建筑侧面平均分离区长度
Table 1. Mean reattachment length of rectangular building with different side ratios
风场类别 测点层 ${X_{\rm r}}/B$ $D/B = 2$ $D/B = 3$ $D/B = 4$ B 类 1# 1.00 0.83 0.82 8# 1.00 1.04 1.08 11# 1.28 1.27 1.36 D 类 1# 0.59 0.64 0.60 8# 0.59 0.64 0.60 11# 0.86 0.83 0.82 -
全涌,曹会兰,顾明. 高层建筑横风向风效应研究综述[J]. 同济大学学报,2010,38(6): 810-818.QUAN Yong, Cao Huilan, GU Ming. Cross-wind effect of high-rise buildings:state of art[J]. Journal of Tongji University, 2010, 38(6): 810-818. YANG Qinshan, GAO Rong, BAI Fan, et al. Damage to buildings and structures due to recent devastating wind hazards in East Asia[J]. Natural Hazards, 2018, 92(6): 1-33. 董欣,赵昕,丁洁民,等. 矩形高层建筑表面风压特性研究[J]. 建筑结构学报,2016,37(1): 116-124.DONG Xin, ZHAO Xin, DING Jiemin, et al. Wind pressure characteristics on a high-rise building with rectangular section[J]. Journal of Building Structures, 2016, 37(1): 116-124. YANG Y, LI M S, MA C M, LI S P. Experimental investigation on the unsteady lift of an airfoil in a sinusoidal streamwise gust[J]. Physics of Fluids, 2017, 29(5): 051703.1-051703.6. VICKERY B. J. Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream[J]. Journal of Fluid Mechanics, 1966, 25(3): 481-493. doi: 10.1017/S002211206600020X LI Qiusheng, MELBOURNE W H. The effect of large-scale turbulence on pressure fluctuations in separated and reattaching flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 159-169. doi: 10.1016/S0167-6105(99)00069-0 LEE B E. The effect of turbulence on the surface pressure field of a square prism[J]. Journal of Fluid Mechanics, 1975, 69(2): 263-282. doi: 10.1017/S0022112075001437 NAKAMURA Y, OHYA Y, OZONO S, et al. Experimental and numerical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200-103[J]. Journal of Wind Engineering and Industrial Aerodynamic, 1996, 65(1): 301-308. MATSUMOTO M, SHIRATO H, ARAKI K, et al. Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1): 155-163. LI M S, LI S P, LIAO H L, et al. Spanwise correlation of aerodynamic forces on oscillating rectangular cylinder[J]. Journal of wind Engineering and Industrial Aerodynamics, 2016, 154: 47-57. doi: 10.1016/j.jweia.2016.04.003 王新荣,顾明,全涌. 二维矩形柱体表面风压频域特性的雷诺数效应研究[J]. 工程力学,2016,33(7): 100-107.WANG Xinrong, GU Ming, QUAN Yong. Reynolds number effects on frequency domain characteristics of wind pressures on 2D rectangular prisms[J]. Engineering Mechanics, 2016, 33(7): 100-107. CAO S Y, ZHOU Q, ZHOU Z Y. Velocity shear flow over rectangular cylinder with different side ratio[J]. Computer & Fluid, 2014, 96(13): 35-46. MA C M, LIU Y Z, LI Q S, LIAO H L. Prediction and explanation of the aeroelastic behavior of a square-section cylinder via forced vibration[J]. Journal of wind Engineering and Industrial Aerodynamics, 2018, 176: 78-86. doi: 10.1016/j.jweia.2018.03.007 LIANG S, LIU S, LI Q S, et al. Mathematical model of acrosswind dynamic loads on rectangular tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12): 1757-1770. LIN N, LETCHFORD C, TAMURA T, et al. Characteristics of wind forces acting on tall buildings[J]. Journal of wind Engineering and Industrial Aerodynamics, 2005, 93: 217-242. doi: 10.1016/j.jweia.2004.12.001 全涌,张正维,顾明,等. 矩形截面高层建筑的横风向基底弯矩系数均方根值研究[J]. 土木工程学报,2012,45(4): 63-70.QUAN Yong, ZHANG Zhengwei, GU Ming, et al. Study of the RMS values of across-wind aerodynamic base moment coefficients of high-rise buildings with square or rectangular section[J]. China Civil Engineering Journal, 2012, 45(4): 63-70. YAN B W, LI Q S. Detached-eddy and large-eddy simulations of wind effects on a high-rise structure[J]. Computers & Fluids, 2017, 150: 74-83. 曾加东,李明水. 矩形断面高层建筑脉动风荷载频谱特性研究[J]. 西南交通大学学报,2017,52(1): 83-90. doi: 10.3969/j.issn.0258-2724.2017.01.012ZENG Jiadong, LI Mingshui. Experimental study of spectral characteristics of fluctuating wind loads on high-rise building with rectangular section[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 83-90. doi: 10.3969/j.issn.0258-2724.2017.01.012 TAMURA Y, KAWAI H, VEMATSU Y, et al. Wind loads and wind induced response estimations in the recommendations for loads on buildings AIJ 1993[J]. Engineering Structures, 1996, 18: 399-411. doi: 10.1016/0141-0296(95)00121-2 SAATHOFF P J, MELBOURNE W H. Effects of free-stream turbulence on sureace pressure fluctuations in a separation bubble[J]. Journal of Fluid Mechanics, 1997, 337: 1-24. doi: 10.1017/S0022112096004594 李少鹏. 矩形和流线型箱梁断面抖振力特性研究[D]. 成都: 西南交通大学, 2015. 张秉超,全涌,顾明. 考虑极值风速方向性的围护结构设计风荷载概率估计方法研究[J]. 建筑结构学报,2018,39(4): 1-7.ZHANG Bingchao, QUAN Yong, GU Ming. A probabilistic method for estimating extreme wind pressure on structures considering direction effect of extreme wind speed[J]. Journal of Building Structures, 2018, 39(4): 1-7.