Axial Bearing Capacity Analysis of H-Section Steel-Reinforced Recycled Aggregate Concrete Filled Circular Steel Tube Stub Columns
-
摘要: 为了研究圆钢管H型钢再生混凝土短柱轴压力学性能,对此类构件轴压承载力计算公式进行了理论推导,基于极限分析法,运用双剪统一强度理论,并依据H型钢和钢管对核心区再生混凝土约束效果的不同,分别计算H型钢约束区再生混凝土和钢管约束区再生混凝土承载力,提出一套圆钢管H型钢再生混凝土短柱轴压承载力计算公式,考虑了钢管内径厚比、套箍系数、H型钢配钢指标以及再生粗骨料取代率对短柱轴压承载力的影响, 同时也适用于无H型钢的圆钢管再生混凝土短柱轴压承载力计算. 将推导得到的钢管有效约束力代入承载力计算公式所得结果与相关试验结果对比误差在10%以内,吻合较好,验证了承载力计算公式的有效性和精确度.
-
关键词:
- 圆钢管H型钢再生混凝土 /
- 再生粗骨料取代率 /
- 配钢指标 /
- 轴向受压 /
- 承载力
Abstract: In order to investigate the axial compressive properties of H-section steel-reinforced recycled aggregate concrete filled circular steel tube stub columns, the axial bearing capacity calculation formula of this kind of member was theoretically derived. Based on limit analysis and twin shear unified strength theory, bearing capacities of the recycled concrete in H-section steel confined zone and the recycled concrete in steel tube confined zone were calculated, respectively, according to the different restraint effect of H-section steel and steel tube on the recycled concrete in the core area. On this basis, a set of formulas for calculating the axial bearing capacity of H-section steel-reinforced recycled aggregate concrete filled circular steel tube stub columns was put forward, which took into consideration the influences of parameters such as the ratio of inner diameter to thickness of steel tubes, the hoop coefficient, the steel distribution index of H-section steel, and the replacement rate of recycled coarse aggregate on the axial bearing capacity of short columns, and can also be applied to calculate the axial bearing capacity of the recycled aggregate concrete filled circular steel tube stub columns without H-section steel reinforcement. The derived effective binding force of steel tubes is brought into the proposed formula to calculate their axial bearing capacity and compared with test values. Results show that the calculated results agree well with the test values, and the error between them is within 10%, which verifies the validity and accuracy of the proposed calculation formula. -
表 1 ptc取值
Table 1. Values of ptc
MPa η fty/MPa 195 215 235 255 275 295 345 390 40 7.07 7.79 8.52 9.24 9.97 10.69 12.50 14.14 45 6.32 6.96 7.61 8.26 8.91 9.55 11.17 12.63 50 5.71 6.29 6.88 7.46 8.05 8.63 10.10 11.41 55 5.20 5.74 6.28 6.81 7.34 7.87 9.21 10.41 60 4.78 5.27 5.77 6.26 6.75 7.24 8.46 9.57 65 4.43 4.88 5.33 5.79 6.24 6.70 7.83 8.85 70 4.12 4.54 4.96 5.39 5.81 6.23 7.29 8.24 75 3.85 4.25 4.64 5.04 5.43 5.83 6.81 7.70 80 3.62 3.99 4.36 4.73 5.10 5.47 6.40 7.23 85 3.41 3.76 4.11 4.46 4.81 5.16 6.03 6.82 90 3.22 3.55 3.88 4.21 4.54 4.87 5.70 6.44 95 3.06 3.37 3.68 4.00 4.31 4.62 5.41 6.11 100 2.91 3.20 3.50 3.80 4.10 4.40 5.14 5.82 105 2.77 3.05 3.34 3.62 3.91 4.19 4.90 5.54 110 2.65 2.92 3.19 3.46 3.73 4.00 4.68 5.30 115 2.53 2.79 3.05 3.31 3.57 3.83 4.48 5.07 120 2.43 2.68 2.93 3.18 3.43 3.67 4.30 4.86 125 2.33 2.57 2.81 3.05 3.29 3.53 4.13 4.67 130 2.25 2.48 2.71 2.94 3.17 3.40 3.97 4.49 135 2.16 2.38 2.61 2.83 3.05 3.27 3.83 4.33 140 2.09 2.30 2.51 2.73 2.94 3.16 3.69 4.17 表 2 式(18)计算值与相关试验结果对比
Table 2. Comparison between the calculated values from formula (18) and the test values
项目 试件名称 CSJ1 CSJ2 CSJ3 CSJ4 CSJ5 CSJ6 CSJ7 CSJ8 CSJ9 试验峰值荷载[13]/kN 2727.2 2641.5 2613.5 2563.5 2412.7 2230.3 2983.5 2281.0 2525.0 式(18)计算承载力/kN 2781.7 2824.1 2804.9 2752.4 2615.2 2470.1 2880.5 2486.3 2736.7 结果对比值 1.02 1.07 1.07 1.07 1.08 1.11 0.97 1.09 1.08 表 3 式(18)计算值与文献[14]试验结果对比
Table 3. Comparison between the calculated values from formula (18) and the test values of Ref. [14]
项目 试件名称 CA1-1 CA1-2 CA2-1 CA2-2 试验峰值荷载[14]/kN 700.0 711.0 674.0 699.0 式(18)计算承载力/kN 711.0 711.0 670.5 670.5 结果对比值 1.02 1.00 0.99 0.96 表 4 式(18)计算值与文献[15]试验结果对比
Table 4. Comparison between the calculated values from formula (18) and the test values of Ref. [15]
项目 试件名称 Z-0 Z-25% Z-50% Z-75% Z-100% 试验峰值荷载[15]/kN 2328.2 2346.0 2363.9 2381.8 2399.7 式(18)计算承载力/kN 2348.7 2365.6 2356.9 2315.7 2275.4 结果对比值 1.01 1.01 1.00 0.97 0.95 表 5 式(18)计算值与文献[16]试验结果对比
Table 5. Comparison between the calculated values from formula (18) and the test values of Ref. [16]
项目 试件名称 RACFST-30-
1-1RACFST-30-
1-2RACFST-30-
1-3RACFST-30-
0.5-1RACFST-30-
0.5-2RACFST-30-
0.5-3试验峰值荷载[16]/kN 1102.0 1098.0 1118.0 1131.0 1139.0 1070.0 式(18)计算承载力/kN 1051.1 1039.2 1023.8 1134.6 1148.9 1156.0 结果对比值 0.95 0.95 0.92 1.00 1.01 1.08 项目 试件名称 RACFST-30-
0-1RACFST-30-
0-2RACFST-30-
0-3RACFST-50-
1-1RACFST-50-
1-2RACFST-50-
1-3试验峰值荷载[16]/kN 1143.0 1065.0 1137.0 1447.0 1398.0 1421.0 式(18)计算承载力/kN 1096.7 1081.0 1095.0 1276.9 1271.6 1292.6 结果对比值 0.96 1.02 0.96 0.88 0.91 0.91 -
XIAO Jianzhuang, LI Jiabin, ZHANG Ch. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research, 2005, 35: 1187-1194. doi: 10.1016/j.cemconres.2004.09.020 刘数华,阎培渝. 再生骨料混凝土的力学性能[J]. 武汉大学学报(工学版),2010,43(1): 85-88, 101.LIU Shuhua, YAN Peiyu. Mechanical properties of recycled aggregate concrete[J]. Engineering Journal of Wuhan University, 2010, 43(1): 85-88, 101. MICHARL J, MCGINNIS, DAVIS M, et al. Strength and stiffness of concrete with recycled concrete aggregates[J]. Construction and Building Materials, 2017, 154: 258-269. doi: 10.1016/j.conbuildmat.2017.07.015 陈宗平,陈宇良,姚侃. 再生混凝土三轴受压力学性能试验及其影响因素[J]. 建筑结构学报,2014,35(12): 72-81.CHEN Zongping, CHEN Yuliang, YAO Kan. Experimental research on mechanical behavior and influence factor of recycled coarse aggregate concretes under tri-axial compression[J]. Journal of Building Structures, 2014, 35(12): 72-81. 何岸,蔡健,陈庆军,等. 钢套管再生混凝土加固柱轴压试验[J]. 西南交通大学学报,2018,53(6): 1187-1194, 1204. doi: 10.1016/0921-3449(93)90036-FHE An, CAI Jian, CHEN Qingjun, et al. Axial compressive experiment on steel-jacket retrofitted column with recycled aggregate concrete[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1187-1194, 1204. doi: 10.1016/0921-3449(93)90036-F EL-TAWIL S, DEIERLEIN G G. Strength and ductility of concrete encased composite columns[J]. Journal of Structural Engineering, ASCE, 1999, 125(9): 1009-1019. doi: 10.1061/(ASCE)0733-9445(1999)125:9(1009) 蔡绍怀. 现代钢管混凝土结构[M]. 北京: 人民交通出版社. 2003: 43-45. 李艳,赵均海,梁文彪,等. 考虑初应力的钢管混凝土柱轴压承载力统一解[J]. 土木建筑与环境工程,2013,35(3): 63-69.LI Yan, ZHAO Junhai, LIANG Wenbiao, et al. Unified solution of bearing capacity for concrete-filled steel tube column with initial stress under axial compression[J]. Journal of Civil, Architecture & Environmental Engineering, 2013, 35(3): 63-69. EL-TAWIL S, DEIERLEIN G G. Nonlinear analysis of mixed steel-concrete frames II: implementation and verification[J]. Journal of Structural Engineering, 2001, 127(6): 656-665. doi: 10.1061/(ASCE)0733-9445(2001)127:6(656) MARK D D, JEROME F H, ROBERTO T L. Seismic behavior of steel reinforced concrete beam-columns and frames[C]//Proceedings of the ASCE/ SEI Structures Congress. Las Vegas: Structural Engineering Institute, 2011: 14-16. 肖建庄,杨洁,黄一杰,等. 钢管约束再生混凝土轴压试验研究[J]. 建筑结构学报,2011,32(6): 92-98.XIAO Jianzhuang, YANG Jie, HUANG Yijie, et al. Experimental study on recycled concrete confined by steel tube under axial compression[J]. Journal of Building Structures, 2011, 32(6): 92-98. 陈宗平,柯晓军,薛建阳,等. 钢管约束再生混凝土的受力机理及强度计算[J]. 土木工程学报,2013,46(2): 70-77.CHEN Zongping, KE Xiaojun, XUE Jianyang, et al. Mechanical performance and ultimate bearing capacity calculation of steel tube confined recycled coarse aggregate concrete[J]. China Civil Engineering Journal, 2013, 46(2): 70-77. 郭婷婷. 圆钢管型钢再生混凝土组合柱轴压力学性能研究[D]. 西安: 西安理工大学, 2017. 吴凤英, 杨有福. 钢管再生混凝土轴压短柱力学性能初探[J]. 福州大学学报(自然科学版), 2005(增刊1): 305-308, 315.WU Fengying, YANG Youfu. Preliminary research on behavior of recycled concrete-filled steel stubcolumns[J]. Journal of Fuzhou University (Natural Science), 2005(S1): 305-308, 315. 马静,王振波. 圆钢管再生混凝土轴压短柱承载力试验研究[J]. 贵州大学学报(自然科学版),2012,29(3): 104-107. 王玉银,陈杰,纵斌,等. 钢管再生混凝土与钢筋再生混凝土轴压短柱力学性能对比试验研究[J]. 建筑结构学报,2011,32(12): 170-177.WANG Yuyin, CHEN Jie, ZONG Bin, et al. Mechanical behavior of axially loaded recycled aggregate concrete filled steel tubular stubs and reinforced recycled aggregate concrete stubs[J]. Journal of Building Structures, 2011, 32(12): 170-177.