• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

PP-ECC梁抗弯性能试验研究

李福海 胡丁涵 余泳江 王江山 靳贺松

李福海, 胡丁涵, 余泳江, 王江山, 靳贺松. PP-ECC梁抗弯性能试验研究[J]. 西南交通大学学报, 2021, 56(2): 272-281. doi: 10.3969/j.issn.0258-2724.20190081
引用本文: 李福海, 胡丁涵, 余泳江, 王江山, 靳贺松. PP-ECC梁抗弯性能试验研究[J]. 西南交通大学学报, 2021, 56(2): 272-281. doi: 10.3969/j.issn.0258-2724.20190081
LI Fuhai, HU Dinghan, YU Yongjiang, WANG Jiangshan, JIN Hesong. Experimental Study on Flexural Capacity of PP-ECC Beam[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 272-281. doi: 10.3969/j.issn.0258-2724.20190081
Citation: LI Fuhai, HU Dinghan, YU Yongjiang, WANG Jiangshan, JIN Hesong. Experimental Study on Flexural Capacity of PP-ECC Beam[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 272-281. doi: 10.3969/j.issn.0258-2724.20190081

PP-ECC梁抗弯性能试验研究

doi: 10.3969/j.issn.0258-2724.20190081
基金项目: 国家自然科学基金项目(51308471);产学合作协同育人项目(201801098032)
详细信息
    作者简介:

    李福海(1979—),男,高级工程师,博士,研究方向为新型材料及混凝土结构耐久性,E-mail:lifuhai2007@home.swjtu.edu.cn

  • 中图分类号: TU528.41

Experimental Study on Flexural Capacity of PP-ECC Beam

  • 摘要: 为研究聚丙烯纤维水泥基复合材料(PP-ECC)梁与普通钢筋混凝土梁在弯曲荷载作用下力学性能的差异,通过四点弯曲加载,对PP-ECC梁的抗弯性能进行了试验探究. 对PP-ECC梁的弯曲破坏过程进行了阶段划分;基于计算假定和简化后的PP-ECC本构模型推导出PP-ECC梁各阶段的理论临界荷载;通过试验结果对计算模型进行验证,并对比相同配筋率下PP-ECC梁与普通钢筋混凝土梁在抗弯承载力、裂缝发展形态、跨中最大变形以及延性等方面的差异. 研究结果表明:受拉区PP-ECC材料开裂之后并不退出工作而是协同受拉钢筋参与全截面受力;使用简化本构模型计算的PP-ECC梁理论抗弯承载力计算模型精度达到0.83~1.17,具备较良好的精度;PP-ECC梁在达到极限状态时,受拉区呈多裂缝稳态发展,在达到80%极限承载力时,最大裂缝宽度小于0.2 mm;相同配筋率下,PP-ECC梁在每一加载级别的变形、跨中最大变形以及位移延性系数均高于普通钢筋混凝土梁(跨中最大变形和位移延性系数平均提高71.39%和42.84%),并且随着配筋率的提高,跨中最大变形和位移延性系数下降;配筋率相同时,PP-ECC梁的极限抗弯承载力较普通钢筋混凝土梁平均提高6.09%.

     

  • 图 1  试验配筋

    Figure 1.  Test reinforcement

    图 2  裂缝分布

    Figure 2.  Crack distribution

    图 3  荷载-变形曲线

    Figure 3.  Load-deformation curves

    图 4  PP-ECC材料本构关系

    Figure 4.  Constitutive relations of PP-ECC

    图 5  钢筋本构关系

    Figure 5.  Constitutive relations of rebar

    图 6  弹性阶段正截面受力

    Figure 6.  Force on cross section

    图 7  带裂缝阶段正截面受力

    Figure 7.  Force on cross section in working stage

    图 8  破坏阶段正截面受力

    Figure 8.  Force on cross section in failure stage

    图 9  平截面假定验证

    Figure 9.  Assumption of plane section

    图 10  单轴拉伸试验示意

    Figure 10.  Uniaxial drawing schematic diagram

    表  1  试件基本参数

    Table  1.   Basic parameters of specimens

    试件编号基体材料受拉钢筋强度/MPa受拉钢筋直径/mm箍筋强度/MPa箍筋直径/mm试件个数/个
    L1-1,L1-2PP-ECC2
    L2-1,L2-2PP-ECCHRB4008Q23562
    L3-1,L3-2PP-ECCHRB40010Q23562
    L4C30 混凝土HRB4008Q23561
    L5C30 混凝土HRB40010Q23561
    下载: 导出CSV

    表  2  PP纤维性能指标

    Table  2.   Performance index of PP fiber

    长度/mm密度/(kg•m3)直径/μm抗拉强度/MPa拉伸弹模/GPa拉伸率/%
    120.9120480515
    下载: 导出CSV

    表  3  HRB400钢筋性能指标

    Table  3.   Performance index of HRB400 reinforced bar

    直径/mm截面面积/mm2屈服强度/MPa极限强度/MPa弹性模量/GPa
    850.24406435197
    1078.50411476203
    下载: 导出CSV

    表  4  C30混凝土性能指标

    Table  4.   Performance index of C30 concrete

    立方体抗压强度/MPa极限压缩应变/%弹性模量/GPa
    33.470.0924.8
    下载: 导出CSV

    表  5  位移延性系数

    Table  5.   Displacement ductility coefficient

    试样编号$\varDelta _{\rm{y}} $/mm$\varDelta _{\rm{u}} $/mmλ2
    L2-1 10.87 31.30 2.88
    L2-2 11.28 31.18 2.76
    L3-1 8.45 22.30 2.64
    L3-2 9.37 23.62 2.52
    L4 3.12 6.62 2.12
    L5 8.48 14.36 1.69
    下载: 导出CSV

    表  6  PP-ECC单轴拉伸试验参数

    Table  6.   PP-ECC uniaxial tensile test parameters

    哑铃序号σtc/MPaεtc/%σtu/MPaεtu/%
    1 0.67 0.07 1.84 3.57
    2 1.84 0.11 2.51 2.87
    3 0.53 0.05 2.11 4.13
    4 0.32 0.10 2.23 5.13
    5 0.87 0.08 2.40 3.28
    6 1.30 0.13 2.88 4.14
    下载: 导出CSV

    表  7  PP-ECC单轴拉伸本构参数

    Table  7.   PP-ECC uniaxial tensile constitutive parameters

    σtc/MPaεtc/%σtu/MPaεtu/%
    0.840.092.323.80
    下载: 导出CSV

    表  8  PP-ECC单轴压缩本构参数

    Table  8.   PP-ECC uniaxial compressive constitutive parameters

    σcu/MPaεcu/%弹性模量/GPa
    32.090.4113.35
    下载: 导出CSV

    表  9  抗弯承载力对比

    Table  9.   Comparison of flexural capacity

    试件编号开裂弯矩/(kN•m) 极限弯矩/(kN•m)${\omega }_{1}$${\omega }_{2}$xn/mm
    理论值试验值 理论值试验值
    L1-1 0.30 0.69 1.21 1.01 2.30 0.83 10.60
    L1-2 0.30 0.57 1.21 1.17 1.90 0.97 10.60
    L2-1 1.11 0.93 4.35 5.12 0.84 1.17 33.42
    L2-2 1.11 0.89 4.35 4.59 0.81 1.06 33.42
    L3-1 1.11 0.96 5.87 6.19 0.86 1.05 46.27
    L3-2 1.11 0.93 5.87 6.29 0.84 1.07 46.27
    L4 0.93 0.60 3.25 4.57 0.65 1.41 28.11
    L5 1.45 1.26 4.59 5.89 0.87 1.28 43.92
    下载: 导出CSV
  • 俞家欢. 超强韧性纤维混凝土的性能及应用[M]. 北京: 中国建筑工业出版社, 2012: 6-93.
    袁方,陈梦成,王文波. 往复荷载下钢筋增强ECC梁的抗剪性能研究[J]. 铁道学报,2018,40(8): 146-153. doi: 10.3969/j.issn.1001-8360.2018.08.019

    YUAN Fang, CHEN Mengcheng, WANG Wenbo. Study on shear behavior of steel reinforced ECC beams under reversed cyclic loading[J]. Journal of the China Railway Society, 2018, 40(8): 146-153. doi: 10.3969/j.issn.1001-8360.2018.08.019
    葛文杰,冯肖季,翔陈坦. 纤维增强复材筋增强工程用水泥基复合材料-混凝土复合梁受弯性能研究[J]. 工业建筑,2017,47(11): 23-27.

    GE Wenjie, FENG Xiaoji, XIANG Chentan. Experimental research on the flexural behavior of ECC-concrete composite beam reinforced with FRP bars[J]. Industrial Construction, 2017, 47(11): 23-27.
    周双. 纤维增强水泥基复合材料试验研究及其桥梁无缝化改造中的应用[D]. 成都: 西南交通大学, 2017.
    IEVA P, GREGOR F. Phenomenological interpretation of the shear behavior of reinforced engineered cementitious composite beams[J]. Cement and Concrete Composites, 2016, 73: 213-225. doi: 10.1016/j.cemconcomp.2016.07.018
    CHEN Y, YU J, LEUNG C K Y. Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion[J]. Construction and Building Materials, 2018, 167: 325-337. doi: 10.1016/j.conbuildmat.2018.02.009
    SHIMIZU K, KANAKUBO T, KANDA T, et al. Shear behavior of steel reinforced PVA-ECC beams[C]//Proceedings 13th World Conference on Earthquake Engineering Conference. Vancouver: WCEE, 2004: 1-9.
    YAO D, KE Q, YU B, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending- experimental study[J]. Construction and Building Materials, 2018, 177: 102-115. doi: 10.1016/j.conbuildmat.2018.05.122
    袁方,陈梦成. 钢筋增强ECC梁受弯性能评估[J]. 铁道建筑,2016(7): 17-21. doi: 10.3969/j.issn.1003-1995.2016.07.05

    YUAN Fang, CHEN Mengcheng. Evaluation on flexural performance of steel reinforced ECC (engineered cementitious composite) girder[J]. Railway Engineering, 2016(7): 17-21. doi: 10.3969/j.issn.1003-1995.2016.07.05
    汪梦甫,徐亚飞,陈红波. PE-ECC短梁抗剪性能研究[J]. 湖南大学学报(自然科学版),2015,42(11): 10-16. doi: 10.3969/j.issn.1674-2974.2015.11.002

    WANG Mengfu, XU Yafei, CHEN Hongbo. Research on shear behavior of PE-ECC short beam[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 10-16. doi: 10.3969/j.issn.1674-2974.2015.11.002
    薛会青,邓宗. HRECC组合梁弯曲性能的试验研究与理论[J]. 土木工程学报,2013,46(4): 10-17.

    XUE Huiqing, DENG Zong. Experimental and theoretical studies on bending performance of HRECC beams[J]. China Civil Engineering Journal, 2013, 46(4): 10-17.
    李碧雄,廖桥,章一萍,等. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版),2018,49(4): 1153-1161.

    LI Bixiong, LIAO Qiao, ZHANG Yiping, et al. Theoretical on flexural behavior of ultra high strength rebar reinforced engineered cementitious composites beam[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 49(4): 1153-1161.
    GE Wenjie, ASHRAF F A, JI Xiang, et al. Flexural behaviors of ECC-concrete composite reinforced with steel bars[J]. Construction and Building Materials, 2018, 159: 175-188. doi: 10.1016/j.conbuildmat.2017.10.101
    DAN Meng, LEE C K. Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams[J]. Engineering Structures, 2017, 151: 261-272. doi: 10.1016/j.engstruct.2017.08.036
    SHIMIZU K, KANAKUBO T, KANDA T, et al. Shear behavior of steel reinforced PVA-ECC beams[C]//Proceedings 13th World Conference on Earthquake Engineering Conference. Vancouver: WCEE, 2004: 1-9.
    PEERAPONG S, TAKASHI M, TETSUSHI K. Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure[J]. Journal of Materials in Civil Engineering, 2004, 5: 433-443.
    王必元. ECC力学性能及其增强钢筋/FRP筋-混凝土复合梁受弯性能研究[D]. 扬州: 扬州大学, 2016.
    ARISOY B, WU H C. Material characteristics of high performance lightweight concrete reinforced with PVA[J]. Construction and Building Materials, 2008, 22: 635-645. doi: 10.1016/j.conbuildmat.2006.10.010
    QUDAH S, MAALEJ M. Application of engineered cementitious composites (ECC) in interior beam-column connections for enhanced seismic resistance[J]. Engineering Structure, 2014, 69: 235-245. doi: 10.1016/j.engstruct.2014.03.026
    HOSSAIN K M A, ALAM S. High performance composite slabs with profiled steel deck and engineered cementitious composites-strength and shear bond characteristics[J]. Construction and Building Materials, 2016, 125: 227-240. doi: 10.1016/j.conbuildmat.2016.08.021
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
    张鹏,薛伟辰,唐小林,等. 纤维塑料筋混凝土梁延性分析的能量表示法[J]. 武汉理工大学学报,2005,27(8): 49-51. doi: 10.3321/j.issn:1671-4431.2005.08.015

    ZHANG Peng, XUE Weichen, TANG Xiaolin, et al. An energy expression method of ductility analysis of concrete beam reinforced with fiber reinforced plastics bars[J]. Journal of Wuhan University of Technology, 2005, 27(8): 49-51. doi: 10.3321/j.issn:1671-4431.2005.08.015
  • 加载中
图(10) / 表(9)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  302
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-05-08
  • 网络出版日期:  2020-11-23
  • 刊出日期:  2021-04-15

目录

    /

    返回文章
    返回