• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

抑制轮轨摩擦自激振动的扣件结构多参数拟合研究

崔晓璐 黄博 陈光雄

崔晓璐, 黄博, 陈光雄. 抑制轮轨摩擦自激振动的扣件结构多参数拟合研究[J]. 西南交通大学学报, 2021, 56(1): 68-74. doi: 10.3969/j.issn.0258-2724.20190023
引用本文: 崔晓璐, 黄博, 陈光雄. 抑制轮轨摩擦自激振动的扣件结构多参数拟合研究[J]. 西南交通大学学报, 2021, 56(1): 68-74. doi: 10.3969/j.issn.0258-2724.20190023
CUI Xiaolu, HUANG Bo, CHEN Guangxiong. Research on Multi-Parameter Fitting of Fastener Structures to Suppress Wheel-Rail Friction Self-Excited Vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74. doi: 10.3969/j.issn.0258-2724.20190023
Citation: CUI Xiaolu, HUANG Bo, CHEN Guangxiong. Research on Multi-Parameter Fitting of Fastener Structures to Suppress Wheel-Rail Friction Self-Excited Vibration[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 68-74. doi: 10.3969/j.issn.0258-2724.20190023

抑制轮轨摩擦自激振动的扣件结构多参数拟合研究

doi: 10.3969/j.issn.0258-2724.20190023
基金项目: 国家自然科学基金项目资助(51805057);重庆市基础研究与前言探索项目资助(cstc2018jcyjAX0636);城市轨道交通车辆系统集成与控制重庆市重点实验室开发基金项目资助(CKLURTSIC-KFKT-201802)
详细信息
    通讯作者:

    崔晓璐(1990—),女,副教授,研究方向为轮轨/弓网摩擦学、车辆-轨道系统动力学,E-mail:cui_xiaolu@foxmail.com

Research on Multi-Parameter Fitting of Fastener Structures to Suppress Wheel-Rail Friction Self-Excited Vibration

  • 摘要: 为研究扣件结构参数对轮轨摩擦自激振动的影响,基于轮轨摩擦耦合自激振动的观点建立了小半径曲线轨道整体道床支承的轮轨系统有限元模型;通过现场测试和数值仿真验证了轮轨摩擦自激振动模型,进而基于该模型研究了扣件结构中各参数对轮轨摩擦自激振动的影响;综合考虑多因素之间的相互影响,采用最小二乘法得到了预测轮轨摩擦自激振动发生可能性的扣件结构多参数拟合方程. 研究结果表明:在整体道床支承的小半径曲线轨道上,轮轨间饱和蠕滑力引起的轮轨摩擦自激振动是诱导该区间钢轨波磨的关键因素,轮轨系统的摩擦自激振动主要发生在300 Hz和320 Hz;根据扣件结构的多参数拟合方程,在适当范围内,扣件的垂向阻尼为1000 N•s/m,扣件间距为1.0 m组合时,可以降低小半径曲线轨道上轮轨系统摩擦自激振动发生的可能性,从而降低钢轨波磨发生的可能性.

     

  • 图 1  轮对-钢轨系统的有限元模型(R = 300 m)

    Figure 1.  Finite element model of wheelset-track system (R = 300 m)

    图 2  轮轨系统的摩擦自激振动频率和模态

    Figure 2.  Frictional self-excited vibration frequencies and modes of wheelset-track system

    图 3  单个因素对轮轨摩擦自激振动的影响规律

    Figure 3.  Influence of single factor on the frictional self-excited vibration of wheelset-track system

    图 4  扣件结构多参数拟合方程的验证

    Figure 4.  Verification of multi-parameter fitting equations for fastener structures

    表  1  轮轨系统有限元模型的材料参数

    Table  1.   Material parameters of finite element model of wheelset-track system

    部件弹性模量/(×1011 Pa)泊松比密度/(kg•m−3
    轮对2.1000.307800
    钢轨2.059 0.307790
    轨道板0.325 0.242500
    下载: 导出CSV

    表  2  科隆蛋扣件轨道支承结构参数

    Table  2.   Parameters of track support structure of Cologne-egg fastener

    轨道支承结构参数符号数值
    轨枕间距/md0.625
    扣件垂向刚度/(N•m−1KRY1.21 × 107
    扣件横向刚度/(N•m−1KRX7.58 × 106
    扣件纵向刚度/(N•m−1KRZ7.58 × 106
    扣件垂向阻尼/(N•s•m−1)CRY1361.12
    扣件横向阻尼/(N•s•m−1)CRX974.27
    扣件纵向阻尼/(N•s•m−1)CRZ974.27
    地基支承刚度/(N•m−1)KF1.7 × 108
    地基支承阻尼/(N•s•m−1)CF3.1 × 108
    下载: 导出CSV

    表  3  轨道支承结构的参数变化范围

    Table  3.   Parameter variation range of track support structure

    轨道支承结构参数变化范围下限变化范围上限间隔
    d/m 0.5 1.0 0.1
    KRY/(N•m−1 5.0 × 106 5.5 × 107 10.0
    KRX/(N•m−1 5.0 × 106 5.5 × 107 10.0
    KRZ/(N•m−1 5.0 × 106 5.5 × 107 10.0
    CRY/(N•s•m−1) 1 000 9 000 2 000
    CRX/(N•s•m−1) 1 000 2 000 200
    CRZ/(N•s•m−1) 1 000 2 000 200
    下载: 导出CSV
  • GRASSIE S L, KALOUSEK J. Rail corrugation:characteristics,causes,and treatments[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2009, 207(16): 57-68.
    OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9): 1231-1237.
    金学松,李霞,李伟,等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报,2016,51(2): 264-273. doi: 10.3969/j.issn.0258-2724.2016.02.006

    JIN Xuesong, LI Xia, LI Wei, et al. Review of rail corrugation process[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273. doi: 10.3969/j.issn.0258-2724.2016.02.006
    EGANA J I, VINOLAS J, SECO M. Investigation of the influence of rail pad stiffness on rail corrugation on a transit system[J]. Wear, 2006, 261(2): 216-224. doi: 10.1016/j.wear.2005.10.004
    ZHANG H, LIU W, LIU W, et al. Study on the cause and treatment of rail corrugation for Beijing metro[J]. Wear, 2014, 317(1/2): 120-128. doi: 10.1016/j.wear.2014.05.011
    CUI X L, CHEN G X, YANG H G, et al. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners[J]. Vehicle System Dynamics, 2016, 54(3): 353-369. doi: 10.1080/00423114.2015.1137955
    LIU W, ZHANG H, LIU W, et al. Experimental study of the treatment measures for rail corrugation on tracks with Egg fasteners in the Beijing metro[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2017, 232(5): 1360-1374.
    ZHAO C, WANG P, SHENG X, et al. Theoretical simulation and experimental investigation of a rail damper to minimize short-pitch rail corrugation[J]. Mathematical Problems in Engineering, 2017, 1(1): 1-14.
    WU T X. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper[J]. Wear, 2011, 271(1): 339-348.
    YAN Z, MARKINE V, GU A, et al. Optimisation of the dynamic properties of ladder track to minimize the chance of rail corrugation[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2014, 228(1): 292-298.
    OYARZABAL O, G MEZ J, SANTAMAR A J, et al. Dynamic optimization of track components to minimize rail corrugation[J]. Journal of Sound and Vibration, 2009, 319(3): 904-917.
    CHEN G X, ZHOU Z R, OUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    KURZECK B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear, 2011, 271(1): 299-310.
    SUN Y Q, SIMSON S. Wagon-track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track[J]. Wear, 2008, 265(1): 1193-1201.
    崔晓璐,闫硕,陈光雄. 短轨枕区间钢轨波磨的现场测试和数值研究[J]. 振动与冲击,2018,37(12): 171-176.

    CUI Xiaolu, YAN Shuo, CHEN Guangxiong. Field measurement and numerical simulation for rail corrugation in sector of fixed dual short sleeper[J]. Journal of Vibration and Shock, 2018, 37(12): 171-176.
    LI W, WANG H, WEN Z, et al. An investigation into the mechanism of metro rail corrugation using experimental and theoretical methods[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2016, 230(4): 1025-1039. doi: 10.1177/0954409715596182
    李霞. 地铁钢轨波磨形成机理研究[D]. 成都: 西南交通大学, 2012.
    QIAN W, HUANG Z, OUYANG H, et al. Numerical investigation of the effects of rail vibration absorbers on wear behaviour of rail surface[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology, 2019, 233(3): 424-438. doi: 10.1177/1350650118785061
    BROCKLEY C A, KO P L. An investigation of rail corrugation using friction-induced vibration theory[J]. Wear, 1988, 128(1): 99-106. doi: 10.1016/0043-1648(88)90256-6
    ABUBAKAR A R, OUYANG H. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143-155. doi: 10.1504/IJVNV.2006.011051
    李伟. 地铁钢轨波磨成因及其对车辆/轨道行为的影响研究[D]. 成都: 西南交通大学, 2015.
    ZHAO H Y, JENG D S. Accumulated pore pressures around submarine pipeline buried in trench layer with partial backfills[J]. Journal of Engineering Mechanics, 2016, 142(7): 1-15.
    HUANG B, ZHU B, CUI S A, et al. Influence of current velocity on wave-current forces on coastal bridge decks with box girders[J]. Journal of Bridge Engineering, 2018, 23(12): 1-21.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  344
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-05-30
  • 网络出版日期:  2020-08-18
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回