• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高低温下复合绝缘子的连接抗拉性能及优化

晏致涛 马文俊 张璞 裘哲

晏致涛, 马文俊, 张璞, 裘哲. 高低温下复合绝缘子的连接抗拉性能及优化[J]. 西南交通大学学报, 2021, 56(1): 56-61, 83. doi: 10.3969/j.issn.0258-2724.20181032
引用本文: 晏致涛, 马文俊, 张璞, 裘哲. 高低温下复合绝缘子的连接抗拉性能及优化[J]. 西南交通大学学报, 2021, 56(1): 56-61, 83. doi: 10.3969/j.issn.0258-2724.20181032
YAN Zhitao, MA Wenjun, ZHANG Pu, QIU Zhe. Optimization and Tensile Properties of Composite Insulator at High and Low Temperature[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 56-61, 83. doi: 10.3969/j.issn.0258-2724.20181032
Citation: YAN Zhitao, MA Wenjun, ZHANG Pu, QIU Zhe. Optimization and Tensile Properties of Composite Insulator at High and Low Temperature[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 56-61, 83. doi: 10.3969/j.issn.0258-2724.20181032

高低温下复合绝缘子的连接抗拉性能及优化

doi: 10.3969/j.issn.0258-2724.20181032
基金项目: 国家自然科学基金(51778097);重庆市科委自然科学基金(cstc2017jcyjB0210,cstc2018jscx-msybX0284)
详细信息
    作者简介:

    晏致涛(1978—),男,教授,研究方向为结构工程,E-mail:zhitaoyan@qq.com

  • 中图分类号: TM216

Optimization and Tensile Properties of Composite Insulator at High and Low Temperature

  • 摘要: 为了探究复合绝缘子的承载力受高低温以及芯棒与端部金具压接工艺的影响规律,得出最后优化的压接方式,对绝缘子芯棒和端部金具的高低温拉伸试验结果进行了有限元模拟分析. 在常温状态对金具与芯棒的受力进行了模拟,结果与实验数据吻合较好;设计出10种压接工况,评估最优的复合绝缘子端部金具的预紧应力工况;进一步对高低温下的绝缘子承载能力进行了仿真. 研究结果表明:当预紧应力沿金具径向均匀分布并预留金具长度的18%~25%无预紧力的工况下,复合绝缘子链接的承载能力最优,最优模型的弹性极限荷载较现有厂家工艺增大8.23%;本文模拟方法能较好地模拟高低温状态下的绝缘子力学性能,但压接优化对其承载能力提升不明显.

     

  • 图 1  复合绝缘子

    Figure 1.  Composite insulators

    图 2  不同温度下试样端口破坏实物

    Figure 2.  Specimen of damage at different temperatures

    图 3  不同温度下试样拉力位移曲线

    Figure 3.  Tension of specimens with respect to displacement at different temperatures

    图 4  不同径向分布预紧应力工况

    Figure 4.  Preload condition of different radial direction distribution

    图 5  拉力-位移曲线(工况1~4)

    Figure 5.  Curves of tension-displacement (case 1− 4)

    图 6  不同轴向分布预紧应力工况

    Figure 6.  Preload condition of different axial direction

    图 7  拉力-位移曲线(工况5~8)

    Figure 7.  Curves of tension-displacement (case 5 − 8)

    图 8  不同无预紧应力预留长度工况

    Figure 8.  Reserved lengths of different non pre-tightening force

    图 9  模拟拉力-位移曲线(工况8~10)

    Figure 9.  Curves of tension-displacement (case 8 − 10)

    图 10  150 ℃时拉力-位移曲线

    Figure 10.  Curves of tension-displacement at 150°

    图 11  −30 ℃时拉力-位移曲线

    Figure 11.  Curves of tension-displacement at −30°

    表  1  Q235碳素结构钢金具力学性能

    Table  1.   Mechanical properties of Q235 carbon steel fittings

    屈服强
    度/MPa
    极限强
    度/MPa
    泊松比弹性模
    量/GPa
    热膨胀系数/K−1
    2354000.2821012.2 × 10−6
    下载: 导出CSV

    表  2  单向玻璃纤维增强环氧树脂力学性能

    Table  2.   Mechanical properties of unidirectional glass fiber reinforced epoxy resin

    屈服强
    度/MPa
    泊松比径向弹性模量/GPa轴向弹性模量/GPa热膨胀系数/K−1
    4520.29413723.29 × 10−6
    下载: 导出CSV
  • 徐如恬. 瓷绝缘子强度及瓷材料种类强度水平的探讨[J]. 电瓷避雷器,1988(1): 1-8.

    XU Rutian. Discussion on porcelain insulator strength and porcelain material type strength level[J]. Electric Porcelain Arrester, 1988(1): 1-8.
    郭晨鋆,王科,颜冰,等. 线弹性断裂力学的支柱瓷绝缘子断裂特性及断裂机理研究[J]. 云南电力技术,2018,46(2): 12-18.

    GUO Chenyun, WANG Ke, YAN Bing, et al. Fracture characteristics and fracture mechanism of pillar porcelain insulators based on linear elastic fracture mechanics[J]. Yunnan Electric Power Technology, 2018, 46(2): 12-18.
    DHANESWARA D, SUHARNO B, NUGRAHA N D, et al. Effects of ceramic fibre insulation thickness on skin formation and nodule characteristics of thin wall ductile iron casting[C]//IOP Conference Series: Materials Science and Engineering, International Conference on Advanced Materials for Better Future. Surakarta: IOP Publishing Ltd., 2017, 176: 12-32
    张硕,姚宁,吴继平,等. 玻璃纤维增强环氧树脂复合材料的力学性能[J]. 电工材料,2016(1): 11-14.

    ZHANG Shuo, YAO Ning, WU Jiping, et al. Mechanical properties of glass fiber reinforced epoxy composites[J]. electrical materials, 2016(1): 11-14.
    贾红,张鹏. 玻璃纤维增强塑料低温收缩率的测量[J]. 上海交通大学学报,2016,50(4): 502-505.

    JIA Hong, ZHANG Peng. Measurement of low temperature shrinkage of glass fiber reinforced plastics[J]. Journal of Shanghai Jiaotong University, 2016, 50(4): 502-505.
    PARIS L, PARGAMIN L, DUMORORA D, et al. Rating of composite suspension insulators related to the long term mechanical strength of rods[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 2055-2063. doi: 10.1109/61.329538
    DEMIDOV A N, KARIMBEKOV M A, MARCHENKOV A Y. Heating and cooling impact on mechanical properties of rip electric insulator for high voltage inputs[J]. Solid State Phenomena, 2017, 265: 496-500. doi: 10.4028/www.scientific.net/SSP.265.496
    DE TOURREIL C, ROBERGE R, BOURDON P. Long-term mechanical properties of high voltage composite insulators[J]. Power Apparatus & Systems IEEE Transactions on, 1985, 104(10): 2918-2921.
    余涛,杨新华. 压接式复合绝缘子接头处的破坏分析[J]. 水电能源科学,2010,28(10): 139-141.

    YU Tao, YANG Xinhua. Failure analysis of joints of compression type composite insulators[J]. Hydropower and Energy Science, 2010, 28(10): 139-141.
    袁骏. 特高压线路用复合绝缘子的机械性能[J]. 电网技术,2006(12): 29-32.

    YUAN Jun. Mechanical properties of composite insulators for UHV transmission lines[J]. Power Grid Technology, 2006(12): 29-32.
    钟万才. 超高压输电线路架空地线复合绝缘子断裂分析[J]. 广西电力,2014,37(5): 48-50.

    ZHONG Wancai. Fracture analysis of composite insulators for overhead ground wires of EHV transmission lines[J]. Guangxi Electric Power, 2014, 37(5): 48-50.
    杨祉豪. 一种通用型绝缘子卡具夹头力学及有限元分析[J]. 内燃机与配件,2019(3): 46-47.

    YANG Weihao. Mechanical and finite element analysis of a universal insulator clamp[J]. Internal Combustion Engines and Accessories, 2019(3): 46-47.
    陈显贻,刘志强. 棒形悬式复合绝缘子金具对芯棒不同连接结构与机械拉伸强度的关系[J]. 电瓷避雷器,2002(5): 9-13.

    CHEN Xianyi, LIU Zhiqiang. The relationship between the different connecting structures of mandrel and the mechanical tensile strength of the rod suspension composite insulator fittings[J]. Electric Porcelain Arrester, 2002(5): 9-13.
    谢占山. 500 kV“V”串复合绝缘子机械疲劳试验研究[D]. 北京: 华北电力大学, 2012.
    MANE J V, CHANDRA S, SHARMA S, et al. Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates-an experimental study[J]. Procedia Engineering, 2017, 173: 726-731. doi: 10.1016/j.proeng.2016.12.160
    KUMOSA M, HAN Y, KUMOSA L. Analyses of composite insulators with crimped end-fittings:part I—nonlinear finite element computations[J]. Composites Science & Technology, 2002, 62(9): 1191-1207.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  210
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2020-02-16
  • 网络出版日期:  2020-09-18
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回