Study on Creep Test of In-situ Scaling Model of Suspension Bridge Tunnel Anchorage
-
摘要: 为获取雅康高速泸定大渡河特大悬索桥实桥隧道锚蠕变变形规律,根据相似理论,开展隧道锚1∶10原位缩尺模型蠕变试验;利用气液式加载系统进行模型锚分级加载试验,分析模型锚、围岩和界面错动在1.00P (P为缩尺模型单根设计拉力)、3.50P、7.00P荷载下的蠕变全过程规律;采用FLAC3D进行锚碇与围岩体蠕变的三维黏弹塑性仿真分析,进行模拟值与实测值对比分析. 试验结果表明:在1.00P、3.50P、7.00P荷载作用下,锚体最大蠕变量分别为0.62、0.97、1.58 mm,围岩最大蠕变量分别为0.49、0.85、1.38 mm,锚体与围岩错动最大蠕变量分别为0.15、0.64、1.43 mm;锚碇和围岩实测蠕变变形量与计算值在量值上相当,蠕变趋势基本相同;雅康高速特大悬索桥隧道锚和围岩在各级荷载作用下属于稳定型蠕变,正常设计荷载下,锚碇蠕变不会影响悬索桥的长期稳定性.Abstract: In order to obtain the creep deformation law of tunnel anchor of Luding Dadu River super-large suspension bridge on Yakang Expressway, creep test of 1∶10 in-situ scale model of tunnel anchor was carried out according to similarity theory. The graded loading test of model anchor was carried out with gas-liquid loading system, the creep process of model anchor, surrounding rock and interface dislocation under 1.00P (single design tension of scale model), 3.50P, and 7.00P loads were analyzed. The three-dimensional viscoelastic-plastic simulation analysis of creep of anchorage and surrounding rock mass was carried out by FLAC3D, and the simulation value was compared with the measured value. The results show that under 1.00P, 3.50P, and 7.00P loads, the maximum creep of anchor body are 0.62, 0.97 mm, and 1.58 mm, the maximum creep of surrounding rock are 0.49, 0.85, and 1.38 mm, and the maximum creep of anchor body and surrounding rock are 0.15, 0.64 mm, and 1.43 mm, respectively. The measured creep deformation of anchorage and surrounding rock is equivalent to the calculated value, and the creep trend is basically the same. The tunnel anchor and surrounding rock of Yakang super-large suspension bridge belong to stable creep under various loads, the creep of anchorage does not affect the long-term stability of suspension bridge under normal design loads.
-
Key words:
- tunnel anchorage /
- scaling model test /
- creep /
- long-time stability
-
表 1 地层物理力学参数表
Table 1. Physical and mechanical parameters
项目 块体密度
/(g•cm−3)变形模量
/GPa饱和单轴
抗压强度/MPa抗拉强度
/MPa泊松比 粘聚力
/MPa摩擦
系数天然单轴
抗压强度/MPa软化
系数含水率 试验值 2.61~2.70 0.95~5.39 13.40~
31.802.50~3.90 0.24~0.25 0.28~0.62 0.79~1.12 22.40~
46.700.69 1.07~1.82 建议值 2.50 1.20 22.24 0.05 0.35 0.40 0.75 32.25 0.69 1.38 表 2 锚碇与围岩的Burgers蠕变参数
Table 2. Burgers creep parameters of anchorage and surrounding rock
荷载/(× P) Ek/GPa ηk/(GPa•h) Em/GPa ηm/(GPa•h) 1.00 5.04 20.31 0.44 63 900 3.50 3.15 10.11 0.23 30 100 7.00 1.54 4.02 0.15 20 300 表 3 锚碇与围岩力学参数
Table 3. Mechanical parameters of anchorage and surrounding rock
区域 重度/(kg•m−3) 抗拉强度/MPa 粘聚力/MPa 内摩擦角/(°) 泊松比 变形模量/GPa 围岩体 2 500 0.05 0.4 37 0.35 1.2 锚碇 2 700 1.55 1.5 45 0.25 30 -
程强. 基于边坡稳定性的雅康高速公路泸定大渡河特大桥桥位方案选择[C]//2014年全国工程地质学术年会论文集. 太原: 中国地质学会工程地质专委会, 2014: 170-175. 蒋昱州, 王瑞红, 朱杰兵, 等. 伍家岗大桥隧道锚三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2016(增刊2): 4103-4113.JIANG Yuzhou, WANG Ruihong, ZHU Jiebing, et al. Three-dimensional geomechanical model test of tunnel anchor of Wujiagang Bridge [J]. Journal of Rock Mechanics and Engineering, 2016 (S2): 4103-4113. 黎训国,汪丽君,卢磊,等. 山区悬索桥超大隧道锚施工工艺[J]. 公路,2017(5): 111-115.LI Xunguo, WANG Lijun, LU Lei, et al. Construction technology of super large tunnel anchor for suspension Bridge in Mountain Area[J]. Highway, 2017(5): 111-115. 罗莉娅,卫军. 岩体蠕变对悬索桥隧道锚围岩稳定性的影响分析[J]. 公路工程,2007,32(3): 133-136. doi: 10.3969/j.issn.1674-0610.2007.03.034LUO Liya, WEI Jun. Effect of rock mass creep on stability of anchorage surrounding rock of suspension bridge tunnel[J]. Highway Engineering, 2007, 32(3): 133-136. doi: 10.3969/j.issn.1674-0610.2007.03.034 朱玉. 隧道锚设计体系中的关键问题研究与实践[D]. 武汉: 华中科技大学, 2005. 黄东,姚建军,汪宏. 山区公路悬索桥隧道锚设计[J]. 桥梁建设,2010(3): 47-50.HUANG Dong, YAO Jianjun, WANG Hong. Design of tunnel anchors for suspension bridges in mountainous highways[J]. Bridge Construction, 2010(3): 47-50. 肖明清. 复合式衬砌隧道的总安全系数设计方法探讨[J]. 铁道工程学报,2018,35(1): 84-88. doi: 10.3969/j.issn.1006-2106.2018.01.014XIAO Mingqing. Discussion on the design method of total safety factor of composite lining tunnel[J]. Journal of Railway Engineering, 2018, 35(1): 84-88. doi: 10.3969/j.issn.1006-2106.2018.01.014 GRIGGS D. Creep of rocks[J]. Journal of Geology, 1939, 47(3): 225-251. doi: 10.1086/624775 易颖,周伟,马刚,等. 基于精确缩尺的颗粒材料流变研究[J]. 岩土力学,2016,37(6): 1799-1808.YI Ying, ZHOU Wei, MA Gang, et al. Rheological study of granular materials based on exact scaling[J]. Geomechanics, 2016, 37(6): 1799-1808. 蒋海飞,吴祖松,陈坤,等. 岩石单轴拉伸蠕变特性试验研究[J]. 地下空间与工程学报,2017(4): 877-885.JIANG Haifei, WU Zusong, CHEN Kun, et al. Experimental study on uniaxial tensile creep behavior of rocks[J]. Journal of Underground Space and Engineering, 2017(4): 877-885. 杨超,黄达,蔡睿,等. 张开穿透型单裂隙岩体三轴卸荷蠕变特性试验[J]. 岩土力学,2018(1): 53-62.YANG Chao, HUANG Da, CAI Rui, et al. Triaxial unloading creep test of open-through single-fracture rock mass[J]. Geotechnical Mechanics, 2018(1): 53-62. 刘传孝,王龙,张晓雷,等. 不同围压下深井煤岩短时蠕变试验的细观损伤机制分析[J]. 岩土力学,2017,38(9): 2583-2588.LIU Chuanxiao, WANG Long, ZHANG Xiaolei, et al. Meso-damage mechanism analysis of short-term creep test of deep coal and rock under different confining pressures[J]. Geomechanics, 2017, 38(9): 2583-2588. 吴相超. 软岩隧道式锚碇原位缩尺模型试验及稳定性研究[D]. 重庆: 重庆大学, 2016. 熊英,申俊昕. 龙江悬索桥西岸锚碇基础设计及施工要点[J]. 公路交通技术,2012(5): 86-89. doi: 10.3969/j.issn.1009-6477.2012.05.019XIONG Ying, SHEN Junxin. Key points for design and construction of west bank anchorage foundation of longjiang suspension bridge[J]. Highway Traffic Technology, 2012(5): 86-89. doi: 10.3969/j.issn.1009-6477.2012.05.019