Shaking Table Test and Numerical Simulation of Shield Tunnel Connecting Cross Passage
-
摘要: 联络横通道与隧道主体形成的空间交叉结构是隧道抗震的薄弱环节. 为探讨联络横通道采用刚、柔两种连接形式时对盾构隧道地震响应的影响,以相似理论为基础,通过室内土工试验确定了振动台试验中地层和结构相似模型的材料参数及配比,分别建立了振动台试验结构模型和数值分析模型;将第1组试验得到的地层卓越频率15.0 Hz作为其余试验工况和数值计算中地震动频率的输入依据,通过试验和数值计算相结合分析的方法对主隧道与联络横通道的地震响应规律进行了研究. 研究结果表明:结构与相同深度位置地层的加速度响应变化规律基本相同,离地面越近,地层加速度的放大效应越明显;联络横通道采用刚性连接时,其最大应变反应出现在结构的拱顶和两侧拱脚处,而采用柔性连接可较好的降低结构各处的应变反应,且输入地震峰值加速度越大其减弱效果越明显;主隧道横断面上,靠近联络横通道连接处的位置易受其影响而产生应力突变,采用刚性连接时,其受到的影响更大;振动台试验与数值结果规律基本一致,采用刚性连接时,联络横通道对主隧道纵向的影响范围约为3.0倍联络横通道宽度,而采用柔性连接时其影响范围则减小至1.5~2.0倍.Abstract: The shield tunnel and cross passage forming a spatial cross structure, is a weak link in the seismic resistance. To study the influence of the rigid and flexible connection forms on the shield tunnels in seismic response, the material parameters and proportions of the similar models in the shaking table test were determined by geotechnical tests based on the similarity theory, then the experimental structure and numerical model were established. The 15.0 Hz predominant frequency obtained from the first test was used as the input earthquake frequency in the other test conditions and numerical calculation. The seismic response of the main tunnel and the connecting crossway was studied by combining the model test and numerical calculation. The results show that the acceleration response of the stratum and structure at the same depth is basically the same, and the amplification effect of stratum acceleration is more obvious when closer to the ground. The maximum strain response occurs at the vault and arch foot of the structure when rigid connection is used in the connecting transverse passage. Flexible connection can better reduce the strain response of the structure, and the larger the input peak acceleration is, the more obvious the reduction effect is. On the cross section of the main tunnel, the position near the connection of the connecting cross-passage is susceptible to stress mutation, which is more affected with rigid connection . Shaking table test and numerical results are basically the same, the influence range of the cross channel on the longitudinal direction of the main tunnel is about 3.0 times as wide as that of the cross channel when rigid connection is adopted, while the influence range is reduced to 1.5−2.0 times when flexible connection is adopted.
-
Key words:
- shield tunnel /
- cross passage /
- shaking table test /
- numerical simulation /
- seismic response
-
表 1 物理量相似常数取值
Table 1. Values of physical similarity constants
物理量 相似关系 相似比 时间 t ${C_L}{C_\rho }^{0.5}/{C_E}^{0.5}$ 1/4.46 加速度 a ${C_E}/{C_L}{C_\rho }$ 1/2 应力$\sigma $ ${C_E}$ 1/100 应变$\varepsilon $ 1 1 泊松比$\upsilon $ 1 1 表 2 原型及模型主要地层物理力学参数
Table 2. Physical-mechanical parameters of prototypeand model ground
结构 弹性模量/${\rm{MPa}}$ 泊松比 原型 27600 0.21 模型 295 0.23 表 3 地层材料各组分质量配比
Table 3. Mass ratio of each component of formation material
制作
材料重晶
石粉机油 河砂 石英砂 硅藻土 粉煤灰 凡士林 质量
配比0.04 0.08 0.72 0.01 0.05 0.11 0.01 表 4 原型及模型主要地层物理力学参数
Table 4. Physical-mechanical parameters of prototype and model ground
地层 密度$\rho / ({ {\rm{kg} }{\simfont\text{•} }{ {\rm{m} }^{\rm{3} } } })$ 变形模量${E_0}/{\rm{MPa}}$ 凝聚力$c/{\rm{kPa}}$ 内摩擦角$\varphi /\left( {^ \circ } \right)$ 原型 20.6 25.00 50.000 24 模型 17.5 0.25 0.489 28 表 5 振动台试验加载工况
Table 5. Loading conditions of shaking table test
工况 加速度峰值PGA/(× g) 频率f/Hz 持时t/s 1 0.10 待定 40 2 0.15 4.0~28.0 40 3 0.20 待定 40 表 6 地层计算参数
Table 6. Stratigraphic calculation parameters
地层 密度/(kg•m−3) 变形模量/MPa 泊松比 淤泥 1620 2.6 0.35 中粗砂 1900 20 0.26 中风化变质砂岩 2060 25 0.25 强风化变质砂岩 1960 35 0.25 C35混凝土 2500 18000 0.20 C50混凝土 2500 27600 0.20 -
小泉淳. 盾构隧道的抗震研究及算例[M]. 张稳军, 袁大军译. 北京: 中国建筑工业出版社, 2009: 2-11. LIAO Shaoming, XU Yizhi. The Reasonable layout of cross passages for qianjiang river tunnel based on seismic analysis[C]//The IACGE International Conference on Geotechnical and Earthquake Engineering. Chengdu: [s. n.], 2013: 19-25 张迪, 焦齐柱, 徐意智, 等. 地震作用下盾构隧道横通道对主隧道的影响分析[J]. 地下空间与工程学报, 2014, 10(增刊1): 1584-1589.ZHANG Di, JIAO Qizhu, XU Yizhi, et al. Analysis on influence of cross passage on seismic behavior of the main tunnel[J]. Chinese Journal of Underground Space and Engineering, 2014, 10 (S1): 1584-1589. 臧万军,高波. 公路隧道与横通道交叉结构抗震性能研究[J]. 北京工业大学学报,2012(4): 509-512.ZANG Wanjun, GAO Bo. Seismic performance of intersection of highway tunnel and horizontal adit[J]. Journal of Beijing University of Technology, 2012(4): 509-512. 晏启祥, 何川, 耿萍. 盾构隧道联络横通道的地震响应分析[J]. 现代隧道技术, 2008, 71(增刊1): 159-164YAN Qixiang, HE Chuan, GENG Ping, Seismic response analysis of shield tunnel cross passages[J]. Modern Tunnelling Technology 2008, 71 (S1): 159-164 张志强,何川. 双线盾构隧道与联络通道复杂结构受力分析[J]. 铁道学报,2002,24(6): 89-92. doi: 10.3321/j.issn:1001-8360.2002.06.020ZHANG Zhiqiang, HE Chuan. Stress analysis of complex structures of double-line shield tunnel and connection channel[J]. Journal of Railway, 2002, 24(6): 89-92. doi: 10.3321/j.issn:1001-8360.2002.06.020 张志强,何川. 用冻结法修建地铁联络通道施工力学研究[J]. 岩石力学与工程学报,2005,24(18): 3252-3252. doi: 10.3321/j.issn:1000-6915.2005.18.008ZHANG Zhiqiang, HE Chuan. Study on construction mechanics of constructing metro connecting passage by freezing method[J]. Journal of Rock Mechanics and Engineering, 2005, 24(18): 3252-3252. doi: 10.3321/j.issn:1000-6915.2005.18.008 袁大军, 黄清飞, 王梦恕, 等. 水底液化地层大型盾构隧道地震响应分析[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3609-3615.YUAN Dajun, HUANG Qingfei, WANG Mengsu. et al. Study on seismic response of large shield tunnel in submarine liquefiable strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S2): 3609-3615 孔戈,周健,王绍博,等. 盾构隧道联络通道地震响应规律研究[J]. 地震工程与工程振动,2009,29(3): 101-107.KONG Ge, ZHOU Jian, WANG Shaobo, et al. Study on seismic response of connectional passages for a shield tunnel[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(3): 101-107. 徐建平,周健,孔戈. 接头形式对联络通道抗震性能影响的研究[J]. 工程抗震与加固改造,2008,30(2): 57-61. doi: 10.3969/j.issn.1002-8412.2008.02.012XU Jianping, ZHOU Jian, KONG Ge. Study of the influence of the type of joints on seismic behavior of connectional passages[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(2): 57-61. doi: 10.3969/j.issn.1002-8412.2008.02.012 赵武胜, 何先志, 陈卫忠, 等. 盾构隧道与竖井连接处管片及接头震害分析[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3847-3854.ZHAO Wusheng, HE Xianzhi, CHEN Weizhong, et al. Analysis of seismic damage of segments and joints at the junction of shield tunnel and shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 31 (S2): 3847-3854. 袁文忠. 相似理论与静力学模型试验[M]. 成都: 西南交通大学出版社, 1998: 7-36. 李林,何川,耿萍,等. 浅埋偏压洞口段隧道地震响应振动台模型试验研究[J]. 岩石力学与工程学报,2011,30(12): 2540-2548.LI Lin, HE Chuan, GENG Ping, et al. Study of shake table model test for seismic response of portal section of shallow unsymmetrical loading tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2540-2548. 耿萍,何悦,何川,等. 穿越断层破碎带隧道动力响应特性分析[J]. 岩石力学与工程学报,2012,31(7): 1406-1413.GENG Ping, HE Yue, HE Chuan, et al. Research on reasonable aseismic fortified length for tunnel through fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1406-1413. 张景,何川,耿萍,等. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报,2017,36(1): 68-7.ZHANG Jing, HE Chuan, GENG Ping, et al. Shaking table test longitudinal seismic response of shield tunnel through soft and hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1): 68-7. 中华人民共和建设部. 钢结构设计规范: GB 50017—2003[S]. 北京: 北京人民交通出版社, 2003.