• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性

张鹏飞 桂昊 雷晓燕

张鹏飞, 桂昊, 雷晓燕. CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性[J]. 西南交通大学学报, 2020, 55(5): 1036-1043. doi: 10.3969/j.issn.0258-2724.20180944
引用本文: 张鹏飞, 桂昊, 雷晓燕. CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性[J]. 西南交通大学学报, 2020, 55(5): 1036-1043. doi: 10.3969/j.issn.0258-2724.20180944
ZHANG Pengfei, GUI Hao, LEI Xiaoyan. Expansion-Constriction Force Characteristics of Continuously Rails on Bridge under Fracture Condition of CRTS Ⅱ Track Slab Welded[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1036-1043. doi: 10.3969/j.issn.0258-2724.20180944
Citation: ZHANG Pengfei, GUI Hao, LEI Xiaoyan. Expansion-Constriction Force Characteristics of Continuously Rails on Bridge under Fracture Condition of CRTS Ⅱ Track Slab Welded[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1036-1043. doi: 10.3969/j.issn.0258-2724.20180944

CRTS Ⅱ型板断裂条件下桥上无缝线路伸缩力特性

doi: 10.3969/j.issn.0258-2724.20180944
基金项目: 国家自然科学基金项目(51768023);江西省研究生创新专项资金项目(YC2017-S243);江西省自然科学基金项目(20171BAB206054);江西省教育厅重点项目(GJJ180290)
详细信息
    作者简介:

    张鹏飞(1975—),男,副教授,研究方向为桥上无缝线路设计理论与关键技术,E-mail:zhangpf4236@163.com

    通讯作者:

    雷晓燕(1956—),男,教授,研究方向为轨道结构动力学、轨道交通环境振动、噪声预测与控制,E-mail:xiaoyanlei2013@163.com

  • 中图分类号: U213.9+11

Expansion-Constriction Force Characteristics of Continuously Rails on Bridge under Fracture Condition of CRTS Ⅱ Track Slab Welded

  • 摘要: 为了研究桥上CRTSⅡ型轨道板断裂条件下轨道、桥梁结构纵向受力变形规律及其影响,基于有限元法和梁-板-轨相互作用机理,建立桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型,分析不同轨道板断缝位置、断缝宽度、裂缝深度及轨道板、底座板伸缩刚度对断板条件下桥上无砟轨道无缝线路伸缩力分布规律的影响. 研究结果表明:在计算轨道板断裂条件下桥上无砟轨道无缝线路伸缩力时,应根据不同检算部件选取最不利的断板位置,建议将轨道板断缝宽度和深度分别取2 mm和200 mm、轨道板、底座板伸缩刚度折减至10%~50%,计算结果是偏安全的且不失一般性;轨道板断裂增加了断缝处CA (cement asphalt)砂浆层及底座板断裂的风险,断板侧的钢轨纵向位移及轨板相对位移均在断缝处急剧变化.

     

  • 图 1  精细化的有限元模型

    Figure 1.  Refined finite element model

    图 2  轨道板断缝位置

    Figure 2.  Crack locations of track slab

    图 3  结构纵向力与位移

    Figure 3.  Longitudinal forces and displacements of structures

    图 4  不同轨道板断缝位置工况下钢轨纵向力

    Figure 4.  Longitudinal forces of rail under different crack locations of track slab

    图 5  不同轨道板断缝宽度条件下钢轨纵向力

    Figure 5.  Longitudinal forces of rail under different crack widths of track slab

    图 6  不同轨道板裂缝深度条件下钢轨纵向力

    Figure 6.  Longitudinal forces of rail under different crack depths of track slab

    图 7  不同轨道板裂缝深度条件下轨道板内部纵向应力

    Figure 7.  Longitudinal stresses in track slab under different crack depths of track slab

    图 8  不同轨道板裂缝深度条件下轨道板内部裂缝宽度

    Figure 8.  Crack widths in track slab under different crack depths of track slab

    图 9  不同轨道板、底座板伸缩刚度条件下钢轨纵向力

    Figure 9.  Longitudinal forces of rail under different expansion-constriction stiffness of track slab and bed plate

    表  1  主要结构物理量符号

    Table  1.   Symbolic representation of main structural physical quantities

    结构名称物理量符号
    钢轨 纵向力 Fr
    纵向位移 Dr
    轨道板 上表面纵向应力 Stsu
    下表面纵向应力 Stsl
    上表面纵向位移 Dtsu
    CA砂浆层 纵向应力 SCAm
    底座板 上表面纵向应力 Sbpu
    下表面纵向应力 Sbpl
    下表面纵向位移 Dbpl
    桥梁梁体 纵向位移 Db
    桥台 纵向力 Fa
    纵向位移 Da
    桥墩 纵向力 Fp
    纵向位移 Dp
    钢轨轨道板相对位移 Drts
    轨道板底座板相对位移 Dtsbp
    底座板桥梁相对位移 Dbpb
    下载: 导出CSV

    表  2  主要结构纵向力最大值

    Table  2.   Maximum longitudinal forces of main structures

    轨道板断裂工况Fr/kNStsu/MPaStsl/MPaSCAm/MPaSbpu/MPaSbpl/MPaFa/kNFp/kN
    压(应)力拉(应)力
    未断板−46.86510.83521.90116.0932.78312.73516.416341.731183.594
    断板(断板侧)−47.73130.34316.310155.82416.28743.73621.161339.867176.715
    断板(非断板侧)−46.90212.53721.21115.7472.74112.39015.403
    下载: 导出CSV

    表  3  主要结构位移最大值

    Table  3.   Maximum longitudinal displacements of main structures mm

    轨道板断裂工况DrDrtsDtsuDtsbpDbplDbpbDbDaDp
    压缩变形拉伸变形
    未断板−1.7271.0410.192−1.7550.015−1.74556.927−58.3921.1391.476
    断板(断板侧)−1.8541.0090.368−2.1110.083−1.87656.837−58.4581.1331.457
    断板(非断板侧)−1.7681.0090.192−1.7960.016−1.78756.948−58.447
    下载: 导出CSV

    表  4  不同轨道板断缝位置条件下伸缩力计算结果

    Table  4.   Calculation results of expansion-constriction force with different crack locations of track slab

    轨道板断缝位置Fr/kNDr/mmDrts/mmStsu/MPaStsl/MPaSCAm/MPaSbpu/MPaSbpl/MPa
    压(应)力拉(应)力压缩变形拉伸变形
    位置 A −47.583 28.430 −1.695 1.164 0.345 21.978 151.994 15.506 42.121 19.708
    位置 B −43.014 10.496 −1.668 0.965 0.412 21.970 129.348 13.173 35.830 17.602
    位置 C −48.545 10.502 −1.66 1.011 0.303 21.968 136.862 13.888 38.001 17.499
    位置 D −48.600 11.390 −1.719 1.007 0.336 21.967 149.018 15.294 41.214 19.205
    位置 E −47.731 30.343 −1.854 1.009 0.368 16.310 155.824 16.287 43.736 24.161
    下载: 导出CSV

    表  5  不同轨道板断缝宽度条件下伸缩力计算结果

    Table  5.   Calculation results of expansion-constriction forces with different crack widths of track slab

    轨道板断缝
    宽度/mm
    Fr/kNDr/mmDrts/mmStsu/MPaStsl/MPaSCAm/MPaSbpu/MPaSbpl/MPa
    压(应)力拉(应)力压缩变形拉伸变形
    1 −47.721 30.141 −1.853 1.009 0.366 16.310 160.817 16.594 43.058 24.089
    2 −47.731 30.343 −1.854 1.009 0.368 16.310 155.824 16.287 43.736 24.161
    3 −47.741 30.536 −1.856 1.008 0.371 16.310 151.089 16.033 44.371 24.230
    4 −47.750 30.720 −1.857 1.008 0.373 16.309 146.597 15.819 44.966 24.296
    5 −47.759 30.895 −1.858 1.008 0.376 16.309 142.325 15.634 45.524 24.358
    下载: 导出CSV

    表  6  不同轨道板裂缝深度条件下纵向力和位移最大值计算结果

    Table  6.   Calculation results of maximum longitudinal forces and maximum longitudinal displacements with different crack depths of track slab

    轨道板裂缝
    深度/mm
    Fr/kNDr/mmDrts/mmStsu/MPaStsl/MPaSCAm/MPaSbpu/MPaSbpl/MPa
    压(应)力拉(应)力压缩变形拉伸变形
    0 −46.865 10.835 −1.727 1.041 0.192 21.901 16.093 2.783 12.735 16.416
    40 −46.875 10.973 −1.729 1.040 0.192 21.313 16.819 2.825 13.049 16.610
    80 −46.922 12.060 −1.736 1.038 0.193 19.965 19.036 3.527 14.149 17.262
    120 −47.033 14.965 −1.753 1.033 0.193 18.006 23.813 4.950 17.193 18.498
    160 −47.256 20.258 −1.786 1.025 0.226 16.313 36.464 7.741 24.019 20.548
    200 −47.731 30.343 −1.854 1.009 0.368 16.310 155.824 16.287 43.736 24.161
    下载: 导出CSV

    表  7  不同轨道板/底座板伸缩刚度条件下纵向力和位移最大值计算结果

    Table  7.   Calculation results of maximum longitudinal forces and maximum longitudinal displacements under different expansion-constriction stiffness of track slab and bed

    轨道板、底座板
    伸缩刚度
    Dr/mmStsu/MPaStsl/MPaSCAm/MPaSbpu/MPaSbpl/MPaFa/kNFp/kN
    压缩变形拉伸变形
    刚度不折减 −1.854 1.009 16.310 155.824 16.287 43.736 21.161 339.867 176.715
    刚度折减至30% −3.668 1.705 8.632 77.718 8.126 22.166 13.908 315.230 364.641
    刚度折减至10% −24.435 9.100 2.527 21.475 2.242 6.438 4.838 455.361 2 062.186
    下载: 导出CSV
  • 谢铠泽,王平,徐井芒,等. 桥上单元板式无砟轨道无缝线路的适应性[J]. 西南交通大学学报,2014,49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014

    XIE Kaize, WANG Ping, XU Jingmang, et al. Adaptability of continuous welded rail of unit slab non-ballast track on bridges[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 649-655. doi: 10.3969/j.issn.0258-2724.2014.04.014
    王继军,江成,赵磊,等. 高铁单元板式无砟轨道大跨梁端适应性对比[J]. 铁道工程学报,2018,35(5): 18-23,87. doi: 10.3969/j.issn.1006-2106.2018.05.004

    WANG Jijun, JIANG Cheng, ZHAO Lei, et al. The adaptive contrast research on the slab track of high-speed railway in long span bridge end[J]. Journal of Railway Engineering Society, 2018, 35(5): 18-23,87. doi: 10.3969/j.issn.1006-2106.2018.05.004
    YAN Bin, DAI Gonglian, ZHANG Huaping. Beam-track interaction of high-speed railway bridge with ballast track[J]. Journal of Central South University, 2012, 19(5): 1447-1453. doi: 10.1007/s11771-012-1161-8
    MIN K H, YUN K M. An experimental study for longitudinal resistance of ballast track on bridge[J]. Journal of the Korea Academia-Industrial cooperation Society, 2016, 17(5): 173-178. doi: 10.5762/KAIS.2016.17.5.173
    PAPP H, LIEGNER N. Investigation of internal forces in the rail due to the interaction of CWR tracks and steel railway bridges with ballasted track superstructure[J]. Pollack Periodica, 2016, 11(2): 65-74. doi: 10.1556/606.2016.11.2.6
    LEE K C, JANG S Y, JUNG D K, et al. Evaluation of stress reduction of continuous welded rail of sliding slab track from track-bridge interaction analysis[J]. Journal of the Korean Society of Civil Engineers, 2015, 35(5): 1179-1189. doi: 10.12652/Ksce.2015.35.5.1179
    张鹏飞. 复杂荷载条件下桥上CRTS Ⅱ型板式无砟轨道无缝线路纵向力研究[D]. 北京: 北京交通大学, 2018.
    徐庆元,张旭久. 高速铁路博格纵连板桥上无砟轨道纵向力学特性[J]. 中南大学学报(自然科学版),2009,40(2): 526-532.

    XU Qingyuan, ZHANG Xujiu. Longitudinal forces characteristic of bogl longitudinal connected ballastless track on high-speed railway bridge[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 526-532.
    刘亚男. 复杂温度下Ⅱ型板式无砟轨道宽窄接缝病害影响及维修措施[D]. 北京: 北京交通大学, 2016.
    赵林,刘学毅,赵华卫,等. CRTSⅡ型板式轨道宽接缝开裂对轨道受力的影响分析[J]. 铁道科学与工程学报,2016,13(1): 9-14. doi: 10.3969/j.issn.1672-7029.2016.01.002

    ZHAO Lin, LIU Xueyi, ZHAO Huawei, et al. The study of influence on track stress caused by the cracking at wide juncture of CRTSⅡ prefabricated slab track[J]. Journal of Railway Science and Engineering, 2016, 13(1): 9-14. doi: 10.3969/j.issn.1672-7029.2016.01.002
    徐浩,谢铠泽,陈嵘,等. CRTSⅡ型板式轨道宽接缝开裂及修补材料对轨道板的影响分析[J]. 铁道标准设计,2012(7): 30-32,37. doi: 10.3969/j.issn.1004-2954.2012.07.008

    XU Hao, XIE Kaize, CHEN Rong, et al. Influence on track slab caused by crack and repairing material at wide juncture of CRTSⅡ slab-type track[J]. Railway Standard Design, 2012(7): 30-32,37. doi: 10.3969/j.issn.1004-2954.2012.07.008
    徐庆元,张泽,陈效平,等. 桥上CRTSⅡ型板式无砟轨道混凝土疲劳寿命预测模型试验研究[J]. 铁道科学与工程学报,2017,14(8): 1565-1570. doi: 10.3969/j.issn.1672-7029.2017.08.001

    XU Qingyuan, ZHANG Ze, CHEN Xiaoping, et al. Experimental study on fatigue life prediction model of concrete of CRTSⅡ slab track on bridge[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1565-1570. doi: 10.3969/j.issn.1672-7029.2017.08.001
    徐庆元,林青腾,方子匀,等. 桥上纵连板式无砟轨道疲劳应力谱的理论研究[J]. 西南交通大学学报,2018,53(5): 906-912. doi: 10.3969/j.issn.0258-2724.2018.05.005

    XU Qingyuan, LIN Qingteng, FANG Ziyun. Theoretical study on fatigue stress spectrum of longitudinal connected slab track on brige[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 906-912. doi: 10.3969/j.issn.0258-2724.2018.05.005
    梁淑娟. 长大桥上CRTSⅡ型板式无砟轨道断板影响与可靠性研究[D]. 北京: 北京交通大学, 2017.
    黄河山. 桥上CRTSⅡ型板式轨道假缝开裂及其影响研究[D]. 成都: 西南交通大学, 2014.
    黄河山,曾毅,徐光鑫,等. 桥上CRTSⅡ型板式无砟轨道宽接缝开裂对纵连钢筋受力特性的影响[J]. 铁道标准设计,2014,58(2): 33-36.

    HUANG Heshan, ZENG Yi, XU Guangxin, et al. Effect on longitudinally continuous reinforcing bars' mechanical property caused by the cracking at wide juncture of CRTSⅡ slab ballastless track on bridge[J]. Railway Standard Design, 2014, 58(2): 33-36.
    戴公连,葛浩,邱远喜,等. 高铁大跨度连续梁桥上无砟轨道断板受力研究[J]. 华中科技大学学报(自然科学版),2015,43(9): 100-104,109.

    DAI Gonglian, GE Hao, QIU Yuanxi, et al. Study on broken plate force of ballastless track on high-speed railway long-span continuous beam bridge[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(9): 100-104,109.
    钱程,沈彬然,王冠,等. 桥上无砟轨道纵连板断裂梁轨相互作用分析[J]. 铁道建筑,2016(7): 114-117. doi: 10.3969/j.issn.1003-1995.2016.07.28

    QIAN Cheng, SHEN Binran, WANG Guan, et al. Analysis on interaction between girder and rail under broking of ballastless track longitudinal connected slab on bridge[J]. Railway Engineering, 2016(7): 114-117. doi: 10.3969/j.issn.1003-1995.2016.07.28
    陈小平,王芳芳,赵才友. 纵连底座板断裂对桥上CRTSⅡ型板式无砟轨道受力的影响[J]. 交通运输工程学报,2014,14(4): 25-35.

    CHEN Xiaoping, WANG Fangfang, ZHAO Caiyou. Fracture influence of longitudinal-continuous base layer on force characteristics of CRTSⅡ slab ballastless track on bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 25-35.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  641
  • HTML全文浏览量:  397
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-03
  • 修回日期:  2019-03-28
  • 网络出版日期:  2020-05-08
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回