Influencing Factors Analysis of Seismic Responses of Water Immersed Tunnel
-
摘要: 为分析隧道接头和上覆水对沉管隧道地震响应的影响,采用沉管隧道振动台试验和ADINA有限元软件模拟两种方法进行相关研究. 沉管隧道试验模型材料主要为微粒混凝土,模型缩尺比为1∶30,采用层叠剪切箱装填砂土构成场地,采用黏弹性人工边界和等效荷载输入方法对模型进行仿真分析. 研究结果表明:在同一深度土层,柔性接头沉管隧道的土层加速度放大系数小于刚性接头沉管隧道;当土层发生液化时,其加速度放大系数小于1;当沉管隧道接头剪切刚度(G)减小为0.10G和0.01G时,隧道截面剪应力减小20%和33%,截面轴应力峰值最大值减小16%和30%,截面剪应变峰值分别增加了60%和140%;上覆水使场地加速度放大系数变小,是由于水的存在加大了土层表面的阻尼;在P波作用下,上覆水水深从10 m增长到40 m时,沉管隧道截面剪应力峰值、轴向应力峰值和应变峰值最大值分别以3%~5%、30%~40%和12%~17%的幅度增加.
-
关键词:
- 沉管隧道 /
- 振动台试验 /
- ADINA有限元分析 /
- 地震响应
Abstract: In order to study the seismic response of immersed tunnels with different joints and under overlying water, large scaled shaking table tests and immersed tunnels seismic response simulations were carried out. The main material of immersed tunnels model was granular concrete. The model scale ratio designed in the tests was 1∶ 30. Laminated shear boxes filled with sand were used in the tests to form the site. The viscous-spring artificial boundary and equivalent load method were adopted in simulation analysis. The results show that acceleration amplification factors of flexible joint immersed tunnels are smaller than rigid joint immersed tunnels in the same layer. The acceleration amplification factor is less than 1 when the soil layer appears liquefied. Under the earthquake, the maximum values of tunnel section shearing stress peak reduce by 20% and 33%, axial stress peak reduce by 16% and 30% and strain peak increase by 60% and 140% when tunnel joint stiffness(G) reduce to 0.10G and 0.01G. Overlying water site makes acceleration amplification factors smaller, because the overlying water makes the site damping increases.Under the vertical earthquake, overlying water increase from 10 m to 40 m, maximum values of tunnel section shearing stress peak, axial stress peak and strain peak increase by 3%−5%, 30%−40% and 12%−17%, respectively. -
表 1 加载工况
Table 1. Loading cases
结构(场地)
类型输入波类型 加速度峰值/(× g) 工况
编号柔性隧道 El-Centro 0.1 ① 0.2 ② 0.4 ③ Kobe 0.1 ④ 0.2 ⑤ 0.4 ⑥ 刚性隧道 El-Centro 0.1 ⑦ 0.2 ⑧ 0.4 ⑨ Kobe 0.1 ⑩ 0.2 ⑪ 0.4 ⑫ 无上覆水 El-Centro 0.1 ⑬ 0.2 ⑭ 0.4 ⑮ Kobe 0.1 ⑯ 0.2 ⑰ 0.4 ⑱ 有上覆水 El-Centro 0.1 ⑲ 0.2 ⑳ 0.4 ㉑ Kobe 0.1 ㉒ 0.2 ㉓ 0.4 ㉔ 表 2 应变峰值
Table 2. Peak value of strain
× 10−6 应变片编号 刚性隧道 柔性隧道 0.1g 0.2g 0.4g 0.1g 0.2g 0.4g S1 9 15 28 19 33 60 S2 29 43 95 44 67 110 S3 17 28 60 18 34 60 S4 18 24 36 19 25 48 表 3 应变峰值
Table 3. Peak value of strain
× 10−6 应变片编号 无上覆水 有上覆水 0.1g 0.2g 0.4g 0.1g 0.2g 0.4g S1 10 17 31 11 23 60 S2 18 25 114 20 29 128 S3 19 22 47 17 22 64 S4 20 23 41 19 19 67 表 4 应变峰值
Table 4. Peak value of strain
× 10−6 应变片编号 0.1g 0.4g 刚性隧道 ADINA 柔性隧道 ADINA S1 9 10 28 30 S2 29 33 95 100 S3 17 21 60 66 S4 18 20 36 41 -
UENISHI K, SAKURAI S. Characteristic of the vertical seismic waves associated with the 1995 Hyogo-ken Nanbu(Kobe),Japan earthquake estimated from the failure of the Daikai underground station[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(6): 813-822. doi: 10.1002/(SICI)1096-9845(200006)29:6<813::AID-EQE939>3.0.CO;2-E CHOI J S, LEE J S, KIM J M. Nonlinear earthquake response analysis of 2-D underground structures with soil-structure interaction including separation and sliding at interface[C]//15th ASCE Engineering Mechanics Conference. New York: Columbia, 2002: 1-8 袁勇,禹海涛,燕晓,等. 超长沉管隧道多点振动台试验模拟与分析[J]. 中国公路学报,2016,29(12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020YUAN Yong, YU Haitao, YAN Xiao, et al. Multi-point shaking table test simulation and analysis of a super-long immersed tunnel[J]. China Journal of Highway and Transport, 2016, 29(12): 157-165. doi: 10.3969/j.issn.1001-7372.2016.12.020 刘鸿哲, 黄茂松. 不同埋深矩形隧道地震响应的离心振动台试验[J]. 岩石力学与工程学报, 2013(增刊2): 3404-3412.LIU Hongzhe, HUANG Maosong. Centrifuge model tests of seismic response of rectangular tunnels at different buried depths[J]. China Journal of Rock Mechanics and Engineering, 2013 (S2): 3404-3412. HONGBIN H, BOBET A. Seismic design of cut and cover rectangular tunnels-evaluation of observed behavior of Dakai station during Kobe earthquake[C]//Proceedings of 1st World Forum of Chinese Scholars in Geotechnical Engineering. Shanghai: Tongji University Press. 2003: 456-466. 韩大建,周阿兴. 沉管隧道地震响应分析的等效质点系模型探讨[J]. 华南理工大学学报(自然科学版),1999,27(11): 108-114. doi: 10.3321/j.issn:1000-565X.1999.11.017HAN Dajian, ZHOU Axing. A study of the equivalent mass-system models for the analysis of earthquake response of an immersed tunnel[J]. Journal of South China University of Technology (Natural Science), 1999, 27(11): 108-114. doi: 10.3321/j.issn:1000-565X.1999.11.017 陈向红,张鸿儒. 暗挖海底隧道地震动水压力响应分析[J]. 北京交通大学学报,2012,36(1): 36-40. doi: 10.3969/j.issn.1673-0291.2012.01.007CHEN Xianghong, ZHANG Hongru. Analysis of effect of hydrodynamic pressure on undersea tunnels constructed by excavation method[J]. Journal of Beijing Jiaotong university, 2012, 36(1): 36-40. doi: 10.3969/j.issn.1673-0291.2012.01.007 陈贵红. 沉管隧道抗震数值分析[D]. 成都: 西南交通大学, 2002. 李鹏. 饱和地基中隧道纵向地震反应的数值分析[D]. 北京: 清华大学, 2013. 刘晶波,谷音,杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报,2006,28(9): 1070-1075. doi: 10.3321/j.issn:1000-4548.2006.09.004LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. doi: 10.3321/j.issn:1000-4548.2006.09.004 赵密. 近场波动有限元模拟的应力型时域人工边界条件及其应用[D]. 北京: 北京工业大学, 2009.