Balanced Current Control Method for Virtual Synchronous Generator in Electro-Hydrogen Multi-Energy Complementary Microgrid
-
摘要: 多能互补型微电网将具有互补性的多种能源集中于同一并网系统,可有效提高微电网的能源利用效率及供电可靠性. 虚拟同步发电机(virtual synchronous generator,VSG)技术,实现分布式电源的友好并网. 然而,在非理想运行情况下,当电网电压出现不平衡时,传统的VSG控制不具备抑制负序电流的能力,将导致微电网三相并网电流不平衡,因此提出一种基于电-氢多能互补型微电网的VSG平衡电流控制方法. 本文搭建了包含光伏及储能系统的电能系统模型,和包含电解槽-氢储能-燃料电池系统的氢能系统模型;分析了VSG的基本原理,通过VSG并网小信号模型的分析,对控制参数进行了设计,提高了系统的稳定裕度;定量分析了不平衡电流的产生原因,通过改进dq坐标系下电流指令计算方法,抑制了负序电流,保证电-氢多能互补型微电网的电能质量. 最后仿真验证了多能互补微电网能量管理策略的有效性,仿真结果证明VSG平衡电流控制方法能在电压不平衡情况下实现并网电流三相平衡,最终将冲击电流由52 A抑制至27 A,并显著减小了功率波动.Abstract: The multi-energy complementary microgrid concentrates multiple complementary energy sources in the same grid-connected system, which can effectively improve energy utilization efficiency and power supply reliability of the microgrid. Virtual synchronous generator (VSG) technology enables friendly networking of distributed power supplies. However, in the case of non-ideal operation, the traditional VSG control does not have the ability to suppress the negative sequence current when the grid voltage is unbalanced, which will lead to the imbalance of the three-phase grid-connected current of the microgrid. To solve this problem, a VSG balanced current control method based on electro-hydrogen multi-energy complementary microgrid is proposed. This work builds a power system model including photovoltaic and energy storage systems, and a hydrogen energy system model including an electrolytic cell-hydrogen storage-fuel cell system. Then, the basic principle of VSG is analyzed, and through the analysis of the VSG grid-connected small-signal model, the system parameters and control parameters are designed to improve system stability margin. The causes of the unbalanced current are shown in a way of quantitative analysis. In addition, by improving the current command calculation method in the dq coordinate system, it is able to suppress the negative sequence current and ensure the power quality of the electro-hydrogen multi-complementary microgrid. Finally, the energy management strategy of multi-energy complementary microgrid is verified to be effective by simulation. The simulation results show that the VSG balanced current control method can achieve the three-phase balance of the grid-connected current in the case of voltage imbalance and the inrush current is suppressed from 52 A to 27 A. Furthermore, it significantly reduces power fluctuations.
-
表 1 电源及储能参数
Table 1. Parameters of power supply and energy storage
名称 参数 数值 光伏阵列 环境温度/℃ 25 光照强度/(kW•m2) 1 000 燃料电池 额定功率/kW 1 额定电压/V 24 电解槽 额定功率/kW 1 储氢罐 最大容许压强/MPa 35 体积/L 0.4 初始容量/% 40 蓄电池 最大充放电功率/kW 2 容量/(A•h) 20 额定电压/V 350 初始荷电状态/% 20 额定功率/kW 12 额定电压/V 37.5 表 2 系统参数
Table 2. Parameters of the system
参数 取值 UDC/V 700 R/Ω 0.1 L/mH 6 C/μF 40 Lg/mH 2 D 15 J 0.05 KV 300 k 5 -
王成山,李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化,2010,34(2): 10-14.WANG Chengshan, LI Peng. Development and challenges of distributed generation,the micro-grid and smart distribution system[J]. Automation of electric power systems, 2010, 34(2): 10-14. BAGHAEE H R, MIRSALIM M, GHAREHPETIAN G B, et al. Decentralized sliding mode control of WG/PV/FC microgrids under unbalanced and nonlinear load conditions for on-and off-grid modes[J]. IEEE Systems Journal, 2017, 99: 1-12. LIU C, WANG X, WU X, et al. Economic scheduling model of microgrid considering the lifetime of batteries[J]. Iet Generation Transmission & Distribution, 2017, 11(3): 759-767. 李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网分层能量管理[J/OL]. 西南交通大学学报, 2019(网络首发): 1-8(2019-02-28)[2019-03-04]. http://kns.cnki.net/ kcms/detail/51.1277.U.20190227.1145.002.html.LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management for electric-hydrogen island DC microgrid[J/OL]. Journal of Southwest Jiaotong University, 2019 (Network First): 1-8(2019-02-28) [2019-03-04]. http://kns.cnki.net/kcms/detail/51.1277. U.20190227.1145.002.html. 张丹,王杰. 国内微电网项目建设及发展趋势研究[J]. 电网技术,2016,40(2): 4.ZHANG Dan, WANG Jie. Research on construction and development trend of micro-grid in China[J]. Power System Technology, 2016, 40(2): 4. 陈维荣,王伟颖,郑义斌,等. 局部阴影光伏发电系统中基于改进PSO的MPPT控制[J]. 西南交通大学学报,2018,53(6): 1095-1101, 1129.CHEN Weirong,WANG Weiying,ZHENG Yibin, et al. MPPT control of partial shadow photovoltaic generation system based on an improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101, 1129. 王成山,武震,李鹏. 微电网关键技术研究[J]. 电工技术学报,2014,29(2): 59-68.WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 59-68. KATIRAEI F, IRAVANI M R, LEHN P. Microgrid autonomous operation during and subsequent to islanding process[C]//Power Engineering Society General Meeting. [S.l.]: IEEE, 2005: 248-257. DIMEAS A L, HATZIARGYRIOU N D. Operation of a multiagent system for microgrid control[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1447-1455. doi: 10.1109/TPWRS.2005.852060 ZHONG Q C, WEISS G. Synchronverters:inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. doi: 10.1109/TIE.2010.2048839 吕志鹏,盛万兴,钟庆昌,等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报,2014,34(16): 2591-2603.LÜ Zhipeng, SHENG Wanxing, ZHONG Qingchang, et al. Virtual synchronous generator and its applications in microgrid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. 陈来军,王任,郑天文,等. 基于参数自适应调节的虚拟同步发电机暂态响应优化控制[J]. 中国电机工程学报,2016,36(21): 5724-5731.CHEN Laijun, WANG Ren, ZHENG Tianwen, et al. Optimal control of transient response of virtual synchronous generator based onadaptive parameter adjustment[J]. Proceedings of the CSEE, 2016, 36(21): 5724-5731. 丁明,杨向真,苏建徽. 基于虚拟同步发电机思想的微电网逆变电源控制策略[J]. 电力系统自动化,2009,33(8): 89-93. doi: 10.3321/j.issn:1000-1026.2009.08.019DING Ming, YANG Xiangzhen, SU Jianhui. Control strategies of inverters based on virtual synchronous generator in a microgrid[J]. Automation of Electric Power Systems, 2009, 33(8): 89-93. doi: 10.3321/j.issn:1000-1026.2009.08.019 尚磊,胡家兵,袁小明,等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报,2017,37(2): 403-412.SHANG Lei, HU Jiabing, YUAN Xiaoming, et al. Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37(2): 403-412. 李斌,周林,余希瑞,等. 基于改进虚拟同步发电机算法的微网逆变器二次调频方案[J]. 电网技术,2017,41(8): 2680-2687.LI Bin, ZHOU Liin, YU Xirui, et al. Secondary frequency regulation for microgrid inverters based on improving virtual synchronous generator[J]. Power System Technology, 2017, 41(8): 2680-2687. 段青,盛万兴,沈超,等. 孤岛微电网中虚拟机差异化故障穿越方法[J]. 电网技术,2017,41(10): 3307-3314.DUAN Qing, SHENG Wanxing, SHEN Chao, et al. Differentiated fault ride-through method for synchronverter in islanded microgrid[J]. Power System Technology, 2017, 41(10): 3307-3314. 涂春鸣,杨义,肖凡,等. 非线性负载下微电网主逆变器输出侧电能质量控制策略[J]. 电工技术学报,2018,33(11): 2486-2495.TU Chunming, YANG Yi, XIAO Fan, et al. The output side power quality control strategy for microgrid main inverter under nonlinear load[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2486-2495. 陈丽娟,王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制,2016(4): 16-21. doi: 10.7667/PSPC20160403CHEN Lijuan, WANG Zhijie. Research of operation control of micro-grid based on improved droop control[J]. Power System Protection and Control, 2016(4): 16-21. doi: 10.7667/PSPC20160403 韩华,刘尧,孙尧,等. 一种微电网无功均分的改进控制策略[J]. 中国电机工程学报,2014,34(16): 2639-2648.HAN Hua, LIU Yao, SUN Yao, et al. An improved control strategy for reactive power sharing in microgrids[J]. Proceedings of the CSEE, 2014, 34(16): 2639-2648. 李武华,王金华,杨贺雅,等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报,2017,37(2): 381-391.LI Wuhua, WANG Jinhua, YANG Heya, et al. Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391. 钟迪,李启明,周贤,等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电,2018,47(2): 1-5.ZHONG Di, LI Qiming, ZHOU Xian, et al. Research status and development trends for key technologies of multi-energy complementary comprehensive utilization system[J]. Thermal Power Generation, 2018, 47(2): 1-5. 马喜平,谢永涛,董开松,等. 多能互补微电网的能量管理研究[J]. 高压电器,2015,51(6): 108-114.MA Xiping, XIE Yongtao, DONG Kaisong, et al. Research on energy management of multi-energy complementary microgrid[J]. High Voltage Apparatus, 2015, 51(6): 108-114.