• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电-氢多能互补型微电网的VSG平衡电流控制方法

陈维荣 于瑾 李奇 蒲雨辰 杨寒卿 韩莹

陈维荣, 于瑾, 李奇, 蒲雨辰, 杨寒卿, 韩莹. 电-氢多能互补型微电网的VSG平衡电流控制方法[J]. 西南交通大学学报, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
引用本文: 陈维荣, 于瑾, 李奇, 蒲雨辰, 杨寒卿, 韩莹. 电-氢多能互补型微电网的VSG平衡电流控制方法[J]. 西南交通大学学报, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
CHEN Weirong, YU Jin, LI Qi, PU Yuchen, YANG Hanqing, HAN Ying. Balanced Current Control Method for Virtual Synchronous Generator in Electro-Hydrogen Multi-Energy Complementary Microgrid[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
Citation: CHEN Weirong, YU Jin, LI Qi, PU Yuchen, YANG Hanqing, HAN Ying. Balanced Current Control Method for Virtual Synchronous Generator in Electro-Hydrogen Multi-Energy Complementary Microgrid[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860

电-氢多能互补型微电网的VSG平衡电流控制方法

doi: 10.3969/j.issn.0258-2724.20180860
基金项目: 四川省科技计划(应用基础面上项目)(19YYJC0698)
详细信息
    作者简介:

    陈维荣(1965—),男,教授,博士生导师,研究方向为电力系统及其自动化、工业监控技术、智能信息处理、燃料电池技术及应用,E-mail:wrchen@swjtu.cn

    通讯作者:

    李奇(1984—),男,教授,博士生导师,研究方向为轨道交通新能源技术、综合能源系统运行与控制等,E-mail:liqi0800@163.com

  • 中图分类号: V221.3

Balanced Current Control Method for Virtual Synchronous Generator in Electro-Hydrogen Multi-Energy Complementary Microgrid

  • 摘要: 多能互补型微电网将具有互补性的多种能源集中于同一并网系统,可有效提高微电网的能源利用效率及供电可靠性. 虚拟同步发电机(virtual synchronous generator,VSG)技术,实现分布式电源的友好并网. 然而,在非理想运行情况下,当电网电压出现不平衡时,传统的VSG控制不具备抑制负序电流的能力,将导致微电网三相并网电流不平衡,因此提出一种基于电-氢多能互补型微电网的VSG平衡电流控制方法. 本文搭建了包含光伏及储能系统的电能系统模型,和包含电解槽-氢储能-燃料电池系统的氢能系统模型;分析了VSG的基本原理,通过VSG并网小信号模型的分析,对控制参数进行了设计,提高了系统的稳定裕度;定量分析了不平衡电流的产生原因,通过改进dq坐标系下电流指令计算方法,抑制了负序电流,保证电-氢多能互补型微电网的电能质量. 最后仿真验证了多能互补微电网能量管理策略的有效性,仿真结果证明VSG平衡电流控制方法能在电压不平衡情况下实现并网电流三相平衡,最终将冲击电流由52 A抑制至27 A,并显著减小了功率波动.

     

  • 图 1  电-氢多能互补型微电网结构

    Figure 1.  Electro-hydrogen multi-energy complementary microgrid structure

    图 2  VSG控制系统框图

    Figure 2.  Block diagram of VSG control system

    图 3  有功-相角、无功-电压传递函数波特图

    Figure 3.  Bode plot for active power-phase and reactive power-voltage transfer functions

    图 4  VSG控制系统闭环控制框图

    Figure 4.  Block diagram of VSG control system in closed-loop control

    图 5  有功控制环波特图

    Figure 5.  Bode diagram of active control loop

    图 6  无功控制环波特图

    Figure 6.  Bode diagram of reactive control loop

    图 7  改进的平衡电流控制框图

    Figure 7.  Block diagram of improved balanced current control

    图 8  多能互补型微电网功率协调控制

    Figure 8.  Coordinated control of multi-energy complementary microgrid power

    图 9  传统VSG控制输出电流波形

    Figure 9.  Output current waveform by traditional VSG control

    图 10  改进VSG电平衡控制输出电流

    Figure 10.  Output current by VSG current balanced control

    图 11  输出有功、无功功率对比

    Figure 11.  Comparison of active and reactive powers

    表  1  电源及储能参数

    Table  1.   Parameters of power supply and energy storage

    名称参数数值
    光伏阵列 环境温度/℃ 25
    光照强度/(kW•m2 1 000
    燃料电池 额定功率/kW 1
    额定电压/V 24
    电解槽 额定功率/kW 1
    储氢罐 最大容许压强/MPa 35
    体积/L 0.4
    初始容量/% 40
    蓄电池 最大充放电功率/kW 2
    容量/(A•h) 20
    额定电压/V 350
    初始荷电状态/% 20
    额定功率/kW 12
    额定电压/V 37.5
    下载: 导出CSV

    表  2  系统参数

    Table  2.   Parameters of the system

    参数取值
    UDC/V 700
    R 0.1
    L/mH 6
    C/μF 40
    Lg/mH 2
    D 15
    J 0.05
    KV 300
    k 5
    下载: 导出CSV
  • 王成山,李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化,2010,34(2): 10-14.

    WANG Chengshan, LI Peng. Development and challenges of distributed generation,the micro-grid and smart distribution system[J]. Automation of electric power systems, 2010, 34(2): 10-14.
    BAGHAEE H R, MIRSALIM M, GHAREHPETIAN G B, et al. Decentralized sliding mode control of WG/PV/FC microgrids under unbalanced and nonlinear load conditions for on-and off-grid modes[J]. IEEE Systems Journal, 2017, 99: 1-12.
    LIU C, WANG X, WU X, et al. Economic scheduling model of microgrid considering the lifetime of batteries[J]. Iet Generation Transmission & Distribution, 2017, 11(3): 759-767.
    李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网分层能量管理[J/OL]. 西南交通大学学报, 2019(网络首发): 1-8(2019-02-28)[2019-03-04]. http://kns.cnki.net/ kcms/detail/51.1277.U.20190227.1145.002.html.

    LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management for electric-hydrogen island DC microgrid[J/OL]. Journal of Southwest Jiaotong University, 2019 (Network First): 1-8(2019-02-28) [2019-03-04]. http://kns.cnki.net/kcms/detail/51.1277. U.20190227.1145.002.html.
    张丹,王杰. 国内微电网项目建设及发展趋势研究[J]. 电网技术,2016,40(2): 4.

    ZHANG Dan, WANG Jie. Research on construction and development trend of micro-grid in China[J]. Power System Technology, 2016, 40(2): 4.
    陈维荣,王伟颖,郑义斌,等. 局部阴影光伏发电系统中基于改进PSO的MPPT控制[J]. 西南交通大学学报,2018,53(6): 1095-1101, 1129.

    CHEN Weirong,WANG Weiying,ZHENG Yibin, et al. MPPT control of partial shadow photovoltaic generation system based on an improved PSO algorithm[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1095-1101, 1129.
    王成山,武震,李鹏. 微电网关键技术研究[J]. 电工技术学报,2014,29(2): 59-68.

    WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 59-68.
    KATIRAEI F, IRAVANI M R, LEHN P. Microgrid autonomous operation during and subsequent to islanding process[C]//Power Engineering Society General Meeting. [S.l.]: IEEE, 2005: 248-257.
    DIMEAS A L, HATZIARGYRIOU N D. Operation of a multiagent system for microgrid control[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1447-1455. doi: 10.1109/TPWRS.2005.852060
    ZHONG Q C, WEISS G. Synchronverters:inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. doi: 10.1109/TIE.2010.2048839
    吕志鹏,盛万兴,钟庆昌,等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报,2014,34(16): 2591-2603.

    LÜ Zhipeng, SHENG Wanxing, ZHONG Qingchang, et al. Virtual synchronous generator and its applications in microgrid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603.
    陈来军,王任,郑天文,等. 基于参数自适应调节的虚拟同步发电机暂态响应优化控制[J]. 中国电机工程学报,2016,36(21): 5724-5731.

    CHEN Laijun, WANG Ren, ZHENG Tianwen, et al. Optimal control of transient response of virtual synchronous generator based onadaptive parameter adjustment[J]. Proceedings of the CSEE, 2016, 36(21): 5724-5731.
    丁明,杨向真,苏建徽. 基于虚拟同步发电机思想的微电网逆变电源控制策略[J]. 电力系统自动化,2009,33(8): 89-93. doi: 10.3321/j.issn:1000-1026.2009.08.019

    DING Ming, YANG Xiangzhen, SU Jianhui. Control strategies of inverters based on virtual synchronous generator in a microgrid[J]. Automation of Electric Power Systems, 2009, 33(8): 89-93. doi: 10.3321/j.issn:1000-1026.2009.08.019
    尚磊,胡家兵,袁小明,等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报,2017,37(2): 403-412.

    SHANG Lei, HU Jiabing, YUAN Xiaoming, et al. Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37(2): 403-412.
    李斌,周林,余希瑞,等. 基于改进虚拟同步发电机算法的微网逆变器二次调频方案[J]. 电网技术,2017,41(8): 2680-2687.

    LI Bin, ZHOU Liin, YU Xirui, et al. Secondary frequency regulation for microgrid inverters based on improving virtual synchronous generator[J]. Power System Technology, 2017, 41(8): 2680-2687.
    段青,盛万兴,沈超,等. 孤岛微电网中虚拟机差异化故障穿越方法[J]. 电网技术,2017,41(10): 3307-3314.

    DUAN Qing, SHENG Wanxing, SHEN Chao, et al. Differentiated fault ride-through method for synchronverter in islanded microgrid[J]. Power System Technology, 2017, 41(10): 3307-3314.
    涂春鸣,杨义,肖凡,等. 非线性负载下微电网主逆变器输出侧电能质量控制策略[J]. 电工技术学报,2018,33(11): 2486-2495.

    TU Chunming, YANG Yi, XIAO Fan, et al. The output side power quality control strategy for microgrid main inverter under nonlinear load[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2486-2495.
    陈丽娟,王致杰. 基于改进下垂控制的微电网运行控制研究[J]. 电力系统保护与控制,2016(4): 16-21. doi: 10.7667/PSPC20160403

    CHEN Lijuan, WANG Zhijie. Research of operation control of micro-grid based on improved droop control[J]. Power System Protection and Control, 2016(4): 16-21. doi: 10.7667/PSPC20160403
    韩华,刘尧,孙尧,等. 一种微电网无功均分的改进控制策略[J]. 中国电机工程学报,2014,34(16): 2639-2648.

    HAN Hua, LIU Yao, SUN Yao, et al. An improved control strategy for reactive power sharing in microgrids[J]. Proceedings of the CSEE, 2014, 34(16): 2639-2648.
    李武华,王金华,杨贺雅,等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报,2017,37(2): 381-391.

    LI Wuhua, WANG Jinhua, YANG Heya, et al. Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391.
    钟迪,李启明,周贤,等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电,2018,47(2): 1-5.

    ZHONG Di, LI Qiming, ZHOU Xian, et al. Research status and development trends for key technologies of multi-energy complementary comprehensive utilization system[J]. Thermal Power Generation, 2018, 47(2): 1-5.
    马喜平,谢永涛,董开松,等. 多能互补微电网的能量管理研究[J]. 高压电器,2015,51(6): 108-114.

    MA Xiping, XIE Yongtao, DONG Kaisong, et al. Research on energy management of multi-energy complementary microgrid[J]. High Voltage Apparatus, 2015, 51(6): 108-114.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  209
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2019-03-06
  • 网络出版日期:  2019-06-13
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回