Effect of Pule-Like Ground Motion on Seismic Performance of Concrete-Filled Steel Tubular Arch Bridge
-
摘要: 为了研究脉冲型地震作用下钢管混凝土拱桥的抗震性能,以一座钢管混凝土拱桥的实际工程为例,采用时程分析方法系统分析了其在非脉冲和脉冲型地震作用下的抗震性能. 首先,基于PEER地震衰减模型并采用谱兼容的方法选取了符合不同场地条件且具有不同脉冲周期的天然地震记录;其次,在综合考虑有无脉冲、脉冲周期以及地震动多维性的基础上,对钢管混凝土拱桥的抗震性能进行了对比分析. 研究结果表明:脉冲型地震动会对结构响应产生较为明显的影响,脉冲效应对结构响应的放大作用在0.96~19.88倍之间,桥梁修建处的场地条件越好放大作用越明显;脉冲周期的不同也会对结构响应产生不可忽略的影响,结构响应的改变率在10~133%之间,脉冲周期越小脉冲效应对结构响应的放大作用就越明显;与非脉冲型地震动相比,地震动多维性对脉冲型地震作用下的结构响应影响较小,但随着脉冲周期的减小,地震动多维性对结构响应的影响变大. 因此,在对断层附近的钢管混凝土拱桥进行抗震设计时不但要考虑有无脉冲的影响,还需要考虑脉冲周期、地震动多维性以及桥梁修建处场地条件的影响,以免错误地估计结构响应.Abstract: To study the seismic performance of a concrete-filled steel tubular (CFST) arch bridge under pulse-like ground motions, a comprehensive theoretical analysis is made of an actual CFST arch bridge under the action of non-pulse-like and pulse-like ground motions using time history analysis. The actual ground motion records with different pulse periods are first selected for each site condition based on the PEER (pacific earthquake engineering research center) ground motion models using the spectrum match method. Then, a comparative seismic analysis of the CFST arch bridge is conducted with and without consideration of pulse, different pulse periods and the dimensionality of ground motions. Results show that the pulse-like ground motions can significantly affect structural responses; a better bridge site condition results in a larger structural responses, and the amplification factor is between 0.96–19.88. Meanwhile, the difference of pulse periods induces significant variations in structural responses, the change rate is between 10%–133%; the smaller the pulse period is, the more obvious the amplification effect on the structural response is. In addition, the dimensionality of ground motions has smaller effect on structural responses under pulse-like motions than the one under non-pulse-like ground motions, but the effect intensifies as the pulse period decreases. Therefore, it is suggested that not only the pulse effect but also the influence of pulse period, dimensionality of ground motions and site conditions for the location of the bridge should be considered in the seismic design phase of a CFST bridge to avoid erroneous response predictions.
-
Key words:
- pulse-like ground motions /
- CFST arch bridges /
- pulse period /
- site condition /
- dimensionality
-
表 1 脉冲型与非脉冲型地震记录详细信息
Table 1. Details of non-pulse-like and pulse-like ground motion records
地震名称 年份 震级/级 场地类型 地震编号 地震类型 脉冲周期Tp/s 加速度峰值/(× g) 断层距/km Irpinia-Italy-01 1980年 6.90 A 类 NGA_283 非脉冲 0.027/0.041 52.9 NGA_292 脉冲 3.1 0.232/0.305 10.8 Loma Prieta 1989年 6.93 C 类 NGA_762 非脉冲 0.144/0.136 39.5 NGA_802 脉冲 4.5 0.363/0.376 8.5 Imperial Valley-06 1979年 6.53 D 类 NGA_169 非脉冲 0.242/0.321 22.0 NGA_179 脉冲 4.6 0.357/0.475 7.0 表 2 不同脉冲周期的脉冲型地震记录详细信息
Table 2. Details of pulse-like ground motion records with different pulse periods
地震名称 年份 震级 地震编号 脉冲周期Tp/s 比列因子 加速度峰值(× g) 断层距/km MSE 平均脉冲周期/s Morgan Hill 1984 6.20 NGA-459 1.2 1.005 1 0.245/0.324 9.9 0.652 2 短周期(1.5) Chi-Chi 1999 7.60 NGA-1202 1.4 0.541 8 0.141/0.151 12.7 0.163 3 Loma Prieta 1989 6.90 NGA-763 1.8 0.790 6 0.233/0.327 10.0 0.352 2 Northridge-01 1994 6.70 NGA-983 3.5 0.253 9 0.132/0.271 5.4 0.076 3 中等周期(3.8) Northridge-01 1994 6.70 NGA-1085 3.5 0.251 9 0.211/0.125 5.2 0.081 1 Loma Prieta 1989 6.90 NGA-802 4.5 0.401 5 0.363/0.376 8.5 0.030 4 Chi-Chi 1999 7.62 NGA-1494 10.0 0.514 9 0.087/0.099 5.3 0.480 4 长周期(11.3) Chi-Chi 1999 7.62 NGA-1489 12.0 0.428 3 0.120/0.107 3.8 0.236 1 Chi-Chi 1999 7.62 NGA-1499 12.0 0.668 8 0.141/0.073 8.5 0.418 8 表 3 桥梁结构模态信息
Table 3. Modal information of high pier bridge
阶数 阵型 周期/s 1 横向对称 1.744 2 横向反对称 0.660 3 竖向反对称 0.517 4 竖向对称 0.483 5 横向对称 0.337 表 4 结构在脉冲型与非脉冲型地震作用下的对比工况
Table 4. Comparative cases of non-pulse-like and pulse-like ground motion records
工况 地震记录 场地类型 速度脉冲 激励方向 1~12 NGA-283 A 无 XP、YP 、XP+Y、X+YP XP+Y+Z、X+YP+Z NGA-292 有 13~24 NGA-762 C 无 NGA-802 有 25~36 NGA-169 D 无 NGA-179 有 表 5 结构在不同脉冲周期地震作用下的对比工况
Table 5. Comparative cases of pulse-like ground motion records with different pulse periods
工况 脉冲周期类型 地震记录 激励方向 1~18 短周期 NGA-459 XP、YP 、XP+Y、X+YP、 XP+Y+Z、X+YP+Z NGA-1202 NGA-763 19~36 中等周期 NGA-983 NGA-1085 NGA-802 37~54 长周期 NGA-1494 NGA-1489 NGA-1499 表 6 脉冲型地震作用下结构响应放大系数
Table 6. Amplification factor of structure responses under pulse-like ground motions
响应 激励方向 关键截面 场地类型 A C D Dy YP 拱脚1 0 0 0 1/4拱肋 18.67 5.31 2.27 拱顶 18.13 5.34 2.39 Fx XP 拱脚1 11.45 4.17 1.00 1/4拱肋 11.23 3.66 0.82 拱顶 8.77 2.96 0.61 My XP 拱脚1 10.63 2.81 0.63 1/4拱肋 10.67 2.97 0.96 拱顶 9.84 2.33 0.72 Mz YP 拱脚1 17.78 6.21 2.33 1/4拱肋 15.18 3.12 1.03 拱顶 17.73 4.39 1.60 Fs YP 短吊杆 19.88 6.36 2.36 中等吊杆 17.11 5.28 2.30 长吊杆 17.18 5.53 2.39 表 7 不同脉冲周期地震动对结构动力响应的改变率
Table 7. Change rate of bridge responses under pulse-like ground motions with different pulse periods
响应 激励方向 关键截面 脉冲周期 短周期 中等周期 Dy YP 拱脚1 0 0 1/4拱肋 0.98 0.46 拱顶 1.05 0.45 Fx XP 拱脚1 1.04 0.34 1/4拱肋 0.75 0.16 拱顶 0.93 0.28 My XP 拱脚1 0.53 0.06 1/4拱肋 0.63 0.10 拱顶 0.99 0.04 Mz YP 拱脚1 1.02 0.51 1/4拱肋 1.33 0.51 拱顶 0.99 0.49 Fs YP 短吊杆 0.96 0.51 中等吊杆 1.03 0.43 长吊杆 1.10 0.47 -
陈宝春,韦建刚,周俊,等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报,2017,50(6): 50-61.CHEN Baochun, WEI Jiangang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China:current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. 郑史雄,周述华,丁桂保. 大跨度钢管混凝土拱桥的地震反应性能[J]. 西南交通大学学报,1999,34(3): 70-74.ZHENG Shixiong, ZHOU Shuhua, DING Guibao. The seismic response behavior of long span CFST arch bridge[J]. Journal of Southwest Jiaotong University, 1999, 34(3): 70-74. 吴玉华,楼文娟. 大跨拱桥三维多点随机地震响应分析[J]. 振动与冲击,2009,28(6): 183-187. doi: 10.3969/j.issn.1000-3835.2009.06.044WU Yuhua, LOU Wenjuan. Random seismic response analysis of long-span arch bridge under three-dimentional multi-supports excitation[J]. Journal of Vibration and Shock, 2009, 28(6): 183-187. doi: 10.3969/j.issn.1000-3835.2009.06.044 王浩,李峰峰,宗周红,等. 大跨度CFST拱桥地震行波效应研究[J]. 振动工程学报,2012,20(5): 556-563. doi: 10.3969/j.issn.1004-4523.2012.05.011WANG Hao, LI Fengfeng, ZONG Zhouhong, et al. Influence analysis of seismic traveling wave for long-span CFST arch bridge[J]. Journal of Vibration Engineering, 2012, 20(5): 556-563. doi: 10.3969/j.issn.1004-4523.2012.05.011 BI K, HAO H, REN W. Seismic response of a concrete filled steel tubular arch bridge to spatially varying ground motions including local site effect[J]. Advances in Structural Engineering, 2013, 16(10): 1799-1817. doi: 10.1260/1369-4332.16.10.1799 ZHANG D, LI X, YAN W, et al. Stochastic seismic analysis of a concrete-filled steel tubular (CFST) arch bridge under tridirectional multiple excitations[J]. Engineering Structures, 2013, 52: 355-371. doi: 10.1016/j.engstruct.2013.01.031 陈彦江,张德义,李晰,等. 空间变化地震作用下钢管混凝土拱桥的抗震分析[J]. 工程力学,2013,30(12): 99-106.CHEN Yanjiang, ZHANG Deyi, LI Xi, et al. Stochastic seismic analysis of a CFST arch bridge under spatially varying ground motions[J]. Engineering Mechanics, 2013, 30(12): 99-106. 郑家树,金邦元. 大跨度钢管混凝土拱桥空间地震反应分析[J]. 西南交通大学学报,2003,38(1): 53-56. doi: 10.3969/j.issn.0258-2724.2003.01.012ZHENG Jiashu, JIN Bangyuan. Three-dimensional seismic responses of long-span CFST arch bridge[J]. Journal of Southwest Jiaotong University, 2003, 38(1): 53-56. doi: 10.3969/j.issn.0258-2724.2003.01.012 王浩,杨玉冬,李爱群,等. 土-桩-结构相互作用对大跨度CFST拱桥地震反应的影响[J]. 东南大学学报(自然科学版),2005,35(3): 433-437. doi: 10.3321/j.issn:1001-0505.2005.03.023WANG Hao, YANG Yudong, LI Aiqun, et al. Influences of soil-pile-structure interaction on seismic response of long span CFST arch bridge[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(3): 433-437. doi: 10.3321/j.issn:1001-0505.2005.03.023 WU Q X, YOSHIMURA M, TAKAHASHI K, et al. Nonlinear seismic properties of the Second Saikai Bridge - a concrete filled tubular (CFT) arch bridge[J]. Engineering Structures, 2006, 28(2): 163-182. doi: 10.1016/j.engstruct.2005.05.003 杜骞,夏修身,孙学先. 大跨度钢管混凝土拱桥非线性抗震性能研究[J]. 地震工程学报,2018,40(2): 206-212. doi: 10.3969/j.issn.1000-0844.2018.02.206DU Qian, XIA Xiushen, SUN Xuexian. Nonlinear seismic behavior of long-span concrete-filled steel tubular arch bridges[J]. China Earthquake Engineering Journal, 2018, 40(2): 206-212. doi: 10.3969/j.issn.1000-0844.2018.02.206 谢开仲,吕文高,覃乐勤,等. 钢管混凝土拱桥地震破坏评估研究[J]. 中国公路学报,2012,25(2): 53-59. doi: 10.3969/j.issn.1001-7372.2012.02.009XIE Kaizhong, LU Wengao, TAN Leqin, et al. Research on seismic damage evaluation of CFST arch bridges[J]. China Journal of Highway and Transport, 2012, 25(2): 53-59. doi: 10.3969/j.issn.1001-7372.2012.02.009 申现龙,陈永祁,刘荷,等. Pushover方法在钢管混凝土拱桥抗震分析中应用[J]. 振动与冲击,2018,37(6): 182-187.SHEN Xianlong, CHEN Yongqi, LIU HE, et al. Application of the Pushover method in the seismic analysis of CFST arch bridge[J]. Journal of Vibration and Shock, 2018, 37(6): 182-187. 李晓莉,邹雨鹤,王东升. 强震下拱式体系桥梁震害特征及抗震研究[J]. 世界地震工程,2018,34(2): 33-43.LI Xiaoli, ZOU Yuhe, WANG Dongsheng. Seismic damage characteristics and research of arch bridges under strong earthquake[J]. World Earthquake Engineering, 2018, 34(2): 33-43. 李勇,任晓强,闫维明,等. 三跨飞燕式异型钢管混凝土拱桥模型振动台试验[J]. 北京工业大学学报,2012,38(9): 1302-1309.LI Yong, REN Xiaoqiang, YAN Weiming, et al. Shaking table study on a three-span irregular CFST arch bridge model[J]. Journal of Beijing University of Technology, 2012, 38(9): 1302-1309. 黄福云,李建中,陈宝春,等. 钢管混凝土单圆管拱结构振动台阵试验研究[J]. 工程力学,2014,31(4): 82-92.HUANG Fuyun, LI Jianzhong, CHEN Baochun, et al. Shaking tables testing of concrete filled steel tubular arc rib model[J]. Engineering Mechanics, 2014, 31(4): 82-92. 闫维明,李晰,陈彦江,等. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学,2013,30(6): 116-123.YAN Weiming, LI Xi, CHEN Yanjiang, et al. Shaking table research on a CFST arch bridge model:effect of site condition[J]. Engineering Mechanics, 2013, 30(6): 116-123. 刘启方,袁一凡,金星,等. 近断层地震动的基本特征[J]. 地震工程与工程振动,2006,26(1): 1-10. doi: 10.3969/j.issn.1000-1301.2006.01.001LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1): 1-10. doi: 10.3969/j.issn.1000-1301.2006.01.001 常志旺,潘毅,江赛雄,等. 脉冲型地震动作用下大跨输煤栈桥的动力响应[J]. 土木与环境工程学报(中英文),2019,41(1): 95-103.CHANG Zhiwang, PAN Yi, JIANG Saixiong, et al. Dynamic response analysis of long-span coal-conveyer gallery subjected to pulse-like ground motions[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 95-103. 潘毅,王晓玥,许浒,等. 脉冲型地震动作用下尼泊尔砖木遗产建筑易损性分析[J]. 西南交通大学学报,2017,52(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2017.06.016PAN Yi, WANG Xiaoyue, XU Hu, et al. Seismic fragility analysis of nepalese brick-timber heritage structures under near-fault pulse-like ground motions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2017.06.016 MOLLAIOLI F, BRUNO S, DECANINI L D, et al. Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions[J]. Meccanica, 2006, 41(1): 23-46. doi: 10.1007/s11012-005-7965-y 李晰,贾宏宇,李倩. 近断层地震动作用下大跨度曲线刚构桥台阵试验研究[J]. 振动与冲击,2017,36(5): 199-207.LI Xi, JIA Hongyu, LI Qian. Shaking table tests for a long-span curved rigid bridge under near-fault ground motions[J]. Journal of Vibration and Shock, 2017, 36(5): 199-207. LIAO W, CHIN Hsiung, WAN L S. Dynamic responses of bridges subjected to near fault ground motions[J]. Journal of the Chinese Institute of Engineers, 2000, 23(4): 455-464. doi: 10.1080/02533839.2000.9670566 JÓNSSON M H, BESSASON B, HAFLIDASON E. Earthquake response of a base-isolated bridge subjected to strong near-fault ground motion[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6): 447-455. doi: 10.1016/j.soildyn.2010.01.001 石岩,王东升,孙治国. 近断层地震动下减隔震桥梁地震反应分析[J]. 桥梁建设,2014,44(3): 19-24.SHI Yan, WANG Dongsheng, SUN Zhiguo. Analysis of seismically mitigated and isolated bridge subjected to near-fault ground motion[J]. Bridge Construction, 2014, 44(3): 19-24. FEMA. Earthquake-resistant design concepts: an introduction to the NEHRP recommended seismic provisions for new buildings and other structures: FEMA P-749[S]. Washington, D. C.: FEMA Distribution Center, 2010 PEER. Technical report for the PEER ground motion database web application[R]. Berkeley: Pacific Earthquake Engineering Research Center, 2010