• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速列车车轮踏面滚压强化有限元分析

赵吉中 徐祥 丁立 阚前华 康国政

赵吉中, 徐祥, 丁立, 阚前华, 康国政. 高速列车车轮踏面滚压强化有限元分析[J]. 西南交通大学学报, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
引用本文: 赵吉中, 徐祥, 丁立, 阚前华, 康国政. 高速列车车轮踏面滚压强化有限元分析[J]. 西南交通大学学报, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803
Citation: ZHAO Jizhong, XU Xiang, DING Li, KAN Qianhua, KANG Guozheng. Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347. doi: 10.3969/j.issn.0258-2724.20180803

高速列车车轮踏面滚压强化有限元分析

doi: 10.3969/j.issn.0258-2724.20180803
基金项目: 国家重点研发计划(2016YFB1102601);四川省杰出青年基金(2017JQ0019)
详细信息
    作者简介:

    赵吉中(1994—),男,博士研究生,研究方向为轮轨滚动接触疲劳,E-mail:jizhong_zhao@foxmail.com

    通讯作者:

    阚前华(1980—),男,教授,研究方向为轮轨滚动接触疲劳,E-mail:qianhuakan@foxmail.com

  • 中图分类号: TG306;U211.5

Finite Element Analysis of Rolling Strengthening Process for Wheel Tread of High-Speed Trains

  • 摘要: 为提高镟修后高速列车车轮踏面强度和使用寿命,进行了车轮踏面滚压强化过程的数值模拟,并对滚压强化的工艺参数进行了优化. 以CRH3高速列车车轮为研究对象,建立了滚压轮-车轮-钢轨三维滚动接触有限元模型;通过计算不同滚压轮尺寸、滚压力及滚压道次对车轮踏面残余应力和等效塑性应变场分布的影响来分析滚压强化机理;采用Borrow-Miller准则修正的Manson-Coffin公式计算了滚压后轮轨接触时车轮踏面的疲劳裂纹萌生寿命,进而对车轮踏面滚压强化工艺参数进行优化. 研究结果表明:随着滚压力的增加,车轮踏面的疲劳裂纹萌生寿命先增后减,且随着滚压道次的增加而下降,即滚压道次的增加反而会降低车轮踏面的疲劳裂纹萌生寿命;滚压道次的增加对残余应力的影响不大,滚压轮圆弧半径的增加会导致疲劳裂纹萌生寿命小幅度增大;综合考虑,以滚压道次为3次、滚压力为1 kN、滚压轮圆弧半径为6 mm时的滚压效果最佳,此时车轮踏面的疲劳裂纹萌生寿命可提升约58%.

     

  • 图 1  车轮踏面尺寸

    Figure 1.  Wheel tread size

    图 2  钢轨廓形尺寸

    Figure 2.  Rail profile size

    图 3  滚压轮截面

    Figure 3.  Sectional profile of roller

    图 4  三维滚压轮-车轮-钢轨滚动接触有限元模型

    Figure 4.  Finite element model of three-dimensional roller-wheel-rail rolling

    图 5  试验和模拟的单调拉伸应力-应变曲线

    Figure 5.  Monotonic tensile stress-strain curves of experimental and simulated

    图 6  车轮滚压加载示意

    Figure 6.  Rolling loading diagram of wheel

    图 7  滚压接触时Hertz接触验证

    Figure 7.  Hertz contact verification under rolling contact

    图 8  轮轨接触加载

    Figure 8.  Loading diagram of wheel-rail contact

    图 9  轮轨接触时Hertz接触验证

    Figure 9.  Hertz contact verification under wheel-rail contact

    图 10  滚压后车轮踏面的等效应力云图

    Figure 10.  Equivalent stress contours of wheel tread after rolling

    图 11  滚压后车轮踏面最大等效残余应力随滚压力的变化曲线

    Figure 11.  Evolution curves of maximum equivalent residual stress vs. rolling force of wheel tread after rolling

    图 12  滚压后车轮踏面深度方向最大残余压应力随滚压力的变化曲线

    Figure 12.  Evolution curves of the maximum residual compressive stress vs. rolling force of wheel tread after rolling along depth direction

    图 13  轮轨接触时车轮的等效应力云图

    Figure 13.  Equivalent stress contour of wheel in wheel-rail contact

    图 14  轮轨接触时深度方向等效应力变化曲线

    Figure 14.  Equivalent stress evolution curves along depth direction under wheel-rail contact

    图 15  车轮纵截面等效塑性应变云图

    Figure 15.  Equivalent plastic strain contour of wheel longitudinal section

    图 16  等效塑性应变幅变化曲线

    Figure 16.  Evolution curves of equivalent plastic strain amplitude

    图 17  随滚压力变化曲线

    Figure 17.  Evolution curves varied with rolling force

    图 18  随滚压道次变化曲线

    Figure 18.  Evolution curves varied with rolling times

    图 19  车轮踏面金相组织

    Figure 19.  Metallographic structure of wheel tread

    表  1  网格敏感性分析

    Table  1.   Mesh sensitivity analysis

    网格尺寸/mm等效应力/MPa计算时间/min计算误差/%
    0.3 608.8 152.0 0
    0.4 608.3 123.0 0.08
    0.5 587.4 98.0 3.50
    下载: 导出CSV

    表  2  疲劳裂纹萌生寿命预测模型材料参数

    Table  2.   Material parameters using in fatigue crack initiation life prediction model

    σf/MPabc$\varepsilon _{\rm{f}}^{0.6}$
    1 425−0.113 4−0.597 60.450 5
    下载: 导出CSV
  • 金学松,张雪珊,张剑,等. 轮轨关系研究中的力学问题[J]. 机械强度,2005,27(4): 408-418. doi: 10.3321/j.issn:1001-9669.2005.04.002

    JIN Xuesong, ZHANG Xueshan, ZHANG Jian, et al. Mechanics in performance of wheel-rail[J]. Journal of Mechanical Strength, 2005, 27(4): 408-418. doi: 10.3321/j.issn:1001-9669.2005.04.002
    CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London, 1926, 112(760): 151-157.
    JOHNSON K L. The effect of a tangential contact force on the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25: 339-346.
    VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964, 17: 338-340.
    SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83.
    KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Delft: Delft University, 1967.
    KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    KALKER J J. Three-dimensional elastic bodies in rolling contact[M]. The Netherlands: Dordrecht, Kluwer Academic Publishers, 1990: 137-184.
    张焱,孔祥安,金学松,等. 轮轨三维弹塑性接触应力的算法研究[J]. 力学与实践,2000,22(1): 23-27. doi: 10.3969/j.issn.1000-0879.2000.01.007

    ZHANG Yan, KONG Xiang’an, JIN Xuesong, et al. The algorithm study of three-dimensional elasto-plastic contact stress of wheel-rail[J]. Mechanics in Engineering, 2000, 22(1): 23-27. doi: 10.3969/j.issn.1000-0879.2000.01.007
    张军,吴昌华. 轮轨接触问题的弹塑性分析[J]. 铁道学报,2000,22(3): 16-21. doi: 10.3321/j.issn:1001-8360.2000.03.004

    ZHANG Jun, WU Changhau. Elasto-plastic analysis of wheel-rail contact problem[J]. Journal of the China Railway Society, 2000, 22(3): 16-21. doi: 10.3321/j.issn:1001-8360.2000.03.004
    ZHAO Xin, LI Zili. The solution of frictional wheel–rail rolling contact with a 3D transient finite element model:validation and error analysis[J]. Wear, 2011, 271(1): 444-452.
    MAI S H, GRAVOUIL A, NGUYEN-TAJAN M L, et al. Numerical simulation of rolling contact fatigue crack growth in rails with the rail bending and the frictional contact[J]. Engineering Fracture Mechanics, 2017, 174: 196-206. doi: 10.1016/j.engfracmech.2016.12.019
    LUNDÉN R. Contact region fatigue of railway wheels under combined mechanical rolling pressure and thermal brake loading[J]. Wear, 1991, 144(1/2): 57-70.
    张澎湃. 动车组车轮疲劳性能数值仿真和评定方法研究[D]. 北京: 中国铁道科学研究院, 2014.
    LIU Y, STRATMAN B, MAHADEVAN S. Fatigue crack initiation life prediction of railroad wheels[J]. International Journal of Fatigue, 2006, 28(7): 747-756. doi: 10.1016/j.ijfatigue.2005.09.007
    HUANG Y B, SHI L B, ZHAO X J, et al. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition[J]. Wear, 2018, 400/401: 62-73. doi: 10.1016/j.wear.2017.12.020
    孙华东. 考虑滚压强化效应的参数化曲轴有限元分析系统的研究[D]. 西安: 西安理工大学, 2009.
    潘玉祥. TC4钛合金表面温滚压强化及其微动磨损性能研究[D]. 广州: 华南理工大学, 2016.
    王迎,康达昌. 抽油杆表面滚压强化的实验研究[J]. 热加工工艺,2004(6): 16-18. doi: 10.3969/j.issn.1001-3814.2004.06.008

    WANG Ying, KANG Dachang. Experimental study on surface peening of pumping rod by rolling technology[J]. Hot Working Technology, 2004(6): 16-18. doi: 10.3969/j.issn.1001-3814.2004.06.008
    宋玉泉,徐振国,赵泼,等. 金属平面滚压塑性精加工的实验分析[J]. 吉林大学学报(工学版),2006,36(2): 188-194.

    SONG Yuquan, XU Zhenguo, ZHAO Po, et al. Expermental analysis of ro ller burnish ing process form etal plane[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(2): 188-194.
    刘福超,雷丽萍,曾攀. 滚压有限元模型数值模拟[J]. 塑性工程学报,2012,19(2): 17-21. doi: 10.3969/j.issn.1007-2012.2012.02.004

    LIU Fuchao, LEI Liping, ZENG Pan. Surface rolling FE model for numerical simulation[J]. Journal of Plasticity Engineering, 2012, 19(2): 17-21. doi: 10.3969/j.issn.1007-2012.2012.02.004
    陈利钦,项彬,任学冲,等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J]. 中国表面工程,2014,27(5): 96-101.

    CHEN Liqin, XIANG Bin, REN Xuechong, et al. Influences of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J]. China Surface Engineering, 2014, 27(5): 96-101.
    于鑫,孙杰,李世涛,等. 滚压工艺对EA4T车轴表面质量完整性的影响及预测模型建立[J]. 中国表面工程,2014,27(5): 87-95. doi: 10.3969/j.issn.1007-9289.2014.05.011

    YU Xin, SUN Jie, LI Shitao, et al. Influences of burnishing process on surface quality integrity of ea4t axles and establishment of prediction model[J]. China Surface Engineering, 2014, 27(5): 87-95. doi: 10.3969/j.issn.1007-9289.2014.05.011
    陈水友,刘吉华,郭俊,等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦学学报,2015,35(5): 531-537.

    CHEN Shuiyou, LIU Jihua, GUO Jun, et al. Effect of wheel material characteristics on wear and fatigue property of wheel-rail[J]. Tribology, 2015, 35(5): 531-537.
    刘旭阳. TC4钛合金动态本构关系研究[D]. 南京: 南京航空航天大学, 2010.
    吴超,赵娟,姚福钦,等. 车轴滚压刀具的设计和滚压工艺试验分析[J]. 工具技术,2018,52(4): 96-99. doi: 10.3969/j.issn.1000-7008.2018.04.021

    WU Chao, ZHAO Juan, YAO Fuqin, et al. Design of axle rolling tool and rolling test analysis[J]. Tool Engineering, 2018, 52(4): 96-99. doi: 10.3969/j.issn.1000-7008.2018.04.021
    沈文林,宋春元,李国栋,等. 高速动车组车轮硬度与车轮多边形形成关系及解决措施研究[J]. 铁道机车车辆,2018,38(4): 18-23. doi: 10.3969/j.issn.1008-7842.2018.04.04

    SHEN Wenlin, SONG Chunyuan, LI Guodong, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions[J]. Railway Locomotive & Car, 2018, 38(4): 18-23. doi: 10.3969/j.issn.1008-7842.2018.04.04
    MANSON S S, HALFORD G R. Fatigue and durability of structural materials[M]. Ohio: ASM International, 2006: 76-103.
    SOCIE D. Multiaxial fatigue damage models[J]. Key Engineering Materials, 1987, 324/325(4): 747-750.
    WEI S S, WILLIAMS E J, LEEN S B. Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations[J]. International Journal of Fatigue, 2005, 27(4): 403-416. doi: 10.1016/j.ijfatigue.2004.08.001
    SMITH K N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778.
    XIA Z, KUJAWSKI D, ELLYIN F. Effect of mean stress and ratcheting strain on fatigue life of steel[J]. International Journal of Fatigue, 1996, 18(5): 335-341. doi: 10.1016/0142-1123(96)00088-6
    雷冬. 疲劳裂纹萌生寿命预测若干方法的研究[D]. 合肥: 中国科学技术大学, 2006.
    何嘉武,马世宁,巴德玛. 表面滚压强化技术研究与应用进展[J]. 装甲兵工程学院学报,2013,27(3): 75-81. doi: 10.11732/j.issn.1672-1497.2013.03.018

    HE Jiawu, MA Shining, BA Dema. Research and application progress of surface rolling strengthening technology[J]. Journal of Academy of Armored Force Engineering, 2013, 27(3): 75-81. doi: 10.11732/j.issn.1672-1497.2013.03.018
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  339
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-19
  • 修回日期:  2018-12-18
  • 网络出版日期:  2020-02-17
  • 刊出日期:  2020-12-15

目录

    /

    返回文章
    返回