• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

中俄原油管道地基土冻融及热学性质试验研究

王伟 张喜发 吕岩

王伟, 张喜发, 吕岩. 中俄原油管道地基土冻融及热学性质试验研究[J]. 西南交通大学学报, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801
引用本文: 王伟, 张喜发, 吕岩. 中俄原油管道地基土冻融及热学性质试验研究[J]. 西南交通大学学报, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801
WANG Wei, ZHANG Xifa, LÜ Yan. Experimental Study on Frost Heave, Thaw Settlement and Thermal Properties of Foundation Soils along China-Russia Crude Oil Pipeline[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801
Citation: WANG Wei, ZHANG Xifa, LÜ Yan. Experimental Study on Frost Heave, Thaw Settlement and Thermal Properties of Foundation Soils along China-Russia Crude Oil Pipeline[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801

中俄原油管道地基土冻融及热学性质试验研究

doi: 10.3969/j.issn.0258-2724.20180801
基金项目: 国家自然科学基金(41502272);吉林省教育厅“十三五”科研规划项目(JJKH20191243KJ)
详细信息
    作者简介:

    王伟(1982—),男,高级实验师,研究方向为冻土物理力学性质及热学性质等,E-mail:16695496@qq.com

    通讯作者:

    吕岩(1983—),女,副教授,研究方向为草炭土冻土物理力学性质及热学性质等,E-mail:lvyy@jlu.edu.cn

  • 中图分类号: P642.14

Experimental Study on Frost Heave, Thaw Settlement and Thermal Properties of Foundation Soils along China-Russia Crude Oil Pipeline

  • 摘要: 中俄原油管道是我国能源战略通道之一,管道穿越大兴安岭多年冻土区,工程地质条件十分复杂,尤其是在伊勒呼里山附近,冻胀和融沉严重影响了管道的正常运营. 为了研究伊勒呼里山附近多年冻土的冻融性质与热学性质,对该区段内的冻土进行冻胀、融沉及导热系数试验,并对试验数据进行回归分析与影响因素分析. 研究结果表明:细粒土塑性指数小于10时,冻胀率不一定随初始含水量的增加而增加,在研究区域内进行管道垫层施工或挖填材料选择时应选用砂砾或碎石,并做好防排水措施;融沉系数随含水量的增加而增大,随干密度的增加而减小,其中粉土对融沉作用十分敏感,不适合作为管道地基,而细砾才是最佳的冻土地基;导热系数分别随总含水量和干密度的增大而增大,其中粗粒土的导热系数大于细粒土,而冻土的导热系数则比融土的高;当含水量小于10%时,融土的导热系数则高于冻土. 不同试验方法所得的结果也具有显著的差异,粗粒土扰动样的导热系数宜采用热流计法测量,细粒土扰动样的导热系数宜采用热线法测量,而原状样的导热系数宜采用比较法测量.

     

  • 图 1  开放系统冻胀试验原理

    Figure 1.  Picture of the open frost heaving test

    图 2  融沉试验仪器

    Figure 2.  Apparatus of thawing settlement test

    图 3  比较法试验原理

    Figure 3.  Principle picture of the comparison test

    图 4  各种土冻胀率与含水率关系散点图

    Figure 4.  Diagram of relationships between frost heave ratio and water content of soils

    图 5  各种土冻胀压力与含水率关系散点图

    Figure 5.  Diagram of relationships between frost compression and water content of soils

    图 6  融沉试验结果散点

    Figure 6.  Diagram of thawing settlement test results

    图 7  导热系数与含水率、干密度之间的关系

    Figure 7.  Relationships between thermal conductivities and water content and dry densities

    图 8  融沉系数与超塑含水率、含泥量的关系

    Figure 8.  Relationships between thawing settlement coefficient and super plastic water content and mud content

    图 9  粉质黏土导热系数试验结果分析

    Figure 9.  Analyze on results of thermal conductivities of silty clay

    图 10  粗粒土导热系数试验结果分析

    Figure 10.  Analyze on results of thermal conductivities of coarse grained soils

    表  1  冻胀试验土样物理力学性质指标

    Table  1.   Physical and mechanical indexes of test soils

    土样编号含水率 w/%干密度 γd/(g•cm−3塑性指数含泥量/%土样名称
    1# 10.0~25.0 1.5~1.7 10.0~13.0 粉质黏土(含砂砾)
    2# 20.0~25.0 1.4~1.6 13.0~15.0 粉质黏土
    3# 10.0~25.0 1.6~1.8 7.0~9.0 粉土(黏砂土)
    4# 4.0~12.0 1.7~1.8 2.0~5.0 中砂
    5# 6.0~11.0 1.7~1.8 10.0~15.0 细粒土质角砾
    下载: 导出CSV

    表  2  融沉试验土料基本物理力学指标

    Table  2.   The physical and mechanical indexes of test soils

    土样
    名称
    含水率/
    %
    干密度/
    (g•cm−3
    塑性
    指数
    含泥量/
    %
    粉质黏土 10.0~65.0 0.8~1.8 10.0~27.0
    粉土 15.0~115.0 0.5~1.8 4.5~9.0
    砂土 10.0~115.0 0.2~2.0 2.0~40.0
    下载: 导出CSV

    表  3  试验土料基本物理力学指标

    Table  3.   The physical and mechanical indexes of soils

    土样
    名称
    含水率/
    %
    干密度/
    (g•cm−3
    塑性
    指数
    含泥量/
    %
    粉质黏土 10.0~65.0 0.8~1.8 10.0~27.0
    细粒土质
    砂土
    18.0~26.0 1.3~2.0
    细粒土质
    砾石
    5.0~15.0 1.6~1.7 2.0~40.0
    下载: 导出CSV

    表  4  各种土料η-w线性回归分析

    Table  4.   Unary linear regression analysis on η-w of soils

    土样编号回归方程R2nF显著性
    1# η = −1.882w + 51.856 0.516 18 F = 17.07 > F0.01(1,16) = 8.53 高度显著
    2# η = 0.804w – 13.998 0.944 6 F = 67.00 > F0.01(1,4) = 21.20 高度显著
    3# η = −1.780w + 39.877 0.446 21 F = 15.29 > F0.01(1,19) = 8.18 高度显著
    4# η = 0.171w − 0.187 0.382 10 F = 3.74 > F0.10(1,8) = 3.46 显著
    5# η = 1.798w – 4.522 0.570 8 F = 7.95 > F0.05(1,6) = 5.99 显著
    下载: 导出CSV

    表  5  试验土样回归方程汇总

    Table  5.   The regression equations of each soil

    土样
    名称
    含水率/
    %
    干密度范围/
    (g•cm−3
    回归
    方程
    nR2F显著性
    粉质黏土 12.0~38.4 1.165~1.720 a0 = 0.296w − 3.377 18 0.620 F = 26.11 > F0.01(1,16) = 8.53 显著
    a0 = 0.565(wwp) − 0.965 23 0.666 F = 41.85 > F0.01(1,21) = 8.02 显著
    a0 = −20.161ln γd + 12.177 18 0.705 F = 38.31 > F0.01(1,16) = 8.53 显著
    粉土 11.6~66.9 0.570~1.880 a0 = 0.640w − 11.472 34 0.971 F = 519.06 > F0.01(1,32) = 7.56 高度显著
    a0 = −47.223ln γd + 23.164 34 0.930 F = 205.00 > F0.01(1,32) = 7.56 高度显著
    砂土 12.1~113.0 0.392~1.911 a0 = 0.434w + 0.461 20 0.625 F = 30.04 > F0.01(1,18) = 8.28 显著
    a0 = −33.030ln γd + 24.629 20 0.736 F = 50.28 > F0.01(1,18) = 8.28 显著
    下载: 导出CSV

    表  6  粉质黏土λ-w-γd回归方程汇总表

    Table  6.   Summary of the regression equation of λ-w-γd of the silty clay

    土样名称含水率
    范围/%
    干密度范围/ (g•cm−3冻土回归方程融土回归方程显著性
    粉质黏土(2008 年) 15.0~35.0 1.4~1.7 λf = 2.408γd + 0.061w − 3.988
    R2 = 0.975,n = 20,
    F = 332.45 > F0.01(1,18) = 8.28)
    λu = 0.708γd + 0.020w − 0.633
    R2 = 0.914,n = 20,
    F = 90.39 > F0.01(1,18) = 8.28)
    高度显著
    粉质黏土(2010 年) 15.0~30.0 1.4~1.7 λf = 1.824γd + 0.061w − 2.550
    R2 = 0.955,n = 16,
    F = 137.73 > F0.01(1,14) = 8.86)
    λu = 1.113γd + 0.063w − 1.035
    R2 = 0.970,n = 16,
    F = 210.00 > F0.01(1,14) = 8.86)
    高度显著
    粉质黏土
    (本文)
    15.0~25.0 1.4~1.6 λf = 1.359γd + 0.039w − 1.642
    R2 = 0.751,n = 13,
    F = 15.08 > F0.01(1,11) = 9.65)
    λu = 1.153γd + 0.032w − 1.411
    R2 = 0.840,n = 8,
    F = 13.09 > F0.01(1,6) = 11.26)
    显著
    下载: 导出CSV

    表  7  粗粒土λ-w-γd回归方程汇总表

    Table  7.   Summary of the regression equation of λ-w-γd of the coarse grained soils

    土样名称含水率/%干密度/ (g•cm−3冻土回归方程融土回归方程显著性
    含细粒土砾石(2008年) 8.0~20.0 1.7~1.9 λf = 1.071γd + 0.071w − 0.999
    R2 = 0.857,n = 12,
    F = 27.07 > F0.01(1,10) = 10.04)
    λu = 1.584γd + 0.041w − 1.974
    R2 = 0.891,n = 12,
    F = 36.80 > F0.01(1,10) = 10.04)
    显著
    细粒土质砾石(本文) 5.0~15.0 1.6~1.7 λf = 0.548γd + 0.059w − 0.712
    R2 = 0.965,n = 5,
    F = 27.67 > F0.05(1,3) = 10.13)
    λu = −0.402γd + 0.062w + 0.853
    R2 = 0.986,n = 5,
    F = 69.81 > F0.05(1,3) = 10.13)
    显著
    细粒土质砂土(本文) 12.0~33.0 1.3~2.0 λf = 0.656γd + 0.008w + 0.871
    R2 = 0.882,n = 6,
    F = 11.19 > F0.05(1,4) = 7.71)
    显著
    下载: 导出CSV
  • 李国玉,金会军,盛煜,等. 中国-俄罗斯原油管道工程(漠河—大庆段)冻土工程地质考察与研究进展[J]. 冰川冻土,2008,30(1): 170-175.

    LI Guoyu, JIN Huijun, SHENG Yu, et al. Recent advances in frozen ground engineering geology survey along the China-Russia crude oil pipeline route (Mohe−Daqing section)[J]. Journal of Glaciology and Geocryology, 2008, 30(1): 170-175.
    李国玉,马巍,王学力,等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学,2015,36(10): 2963-2973.

    LI Guoyu, MA Wei, WANG Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2963-2973.
    金会军,喻文兵,陈友昌,等. 多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J]. 冰川冻土,2005,27(3): 454-464. doi: 10.3969/j.issn.1000-0240.2005.03.021

    JIN Huijun, YU Wenbing, CHEN Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipelines in permafrost regions:a review[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 454-464. doi: 10.3969/j.issn.1000-0240.2005.03.021
    金会军,于少鹏,吕兰芝,等. 大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土,2006,28(4): 467-476. doi: 10.3969/j.issn.1000-0240.2006.04.002

    JIN Huijun, YU Shaopeng, LÜ Lanzhi, et al. Degradation of permafrost in the Da and Xiao Hinggan Mountains,Northeast China,and preliminary assessment of its trend[J]. Journal of Glaciology and Geocryology, 2006, 28(4): 467-476. doi: 10.3969/j.issn.1000-0240.2006.04.002
    何瑞霞,金会军,赵淑萍,等. 冻土导热系数研究现状及进展[J]. 冰川冻土,2017,39(5): 1-11.

    HE Ruixia, JIN Huijun, ZHAO Shuping, et al. Review of status and progress of the study in thermal conductivity of frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(5): 1-11.
    吉延峻,金会军,张建明,等. 中俄原油管道沿线典型土样冻胀性试验研究[J]. 冰川冻土,2008(2): 296-300.

    JI Yanjun, JIN Huijun, ZHANG Jianming, et al. Experimental study of the frost-heaving ratio of the typical soil samples along the China-Russia crude oil pipeline[J]. Journal of Glaciology and Geocryology, 2008(2): 296-300.
    吉延峻,金会军,王国尚,等. 中俄原油管道(漠河-大庆段)地基土融沉稳定性评价研究[J]. 工程地质学报,2010(2): 241-251. doi: 10.3969/j.issn.1004-9665.2010.02.015

    JI Yanjun, JIN Huijun, WANG Guoshang, et al. Thaw stability assessment of the permafrost foundation soil along the proposed China-Russia crude oil pipeline from Mo ’he to Daqing[J]. Journal of Engineering Geology, 2010(2): 241-251. doi: 10.3969/j.issn.1004-9665.2010.02.015
    董斌. 中俄石油管道漠河-塔河段冻土融沉特性及工程措施研究[D]. 长春: 吉林大学, 2008.
    郭高峰. 影响多年冻土融沉特性的因素研究[D]. 长春: 吉林大学, 2008.
    陈义民. 多年冻土融沉特性统计分析与分类研究[D]. 长春: 吉林大学, 2008.
    逯兰. 冻土融化下沉特性试验分析研究[D]. 长春: 吉林大学, 2009.
    陶兆祥,张景森. 大含水(冰)量融土冻土导热系数的测定研究[J]. 冰川冻土,1983,5(2): 75-80.

    TAO Zhaoxiang, ZHANG Jingsen. The thermal conductivity of thawed and frozen soils with high water (ice) content[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 75-80.
    肖琳,李晓昭,赵晓豹,等. 含水量与孔隙率对土体热导率影响的室内实验[J]. 解放军理工大学学报(自然科学版),2008,9(3): 242-247.

    XIAO Lin, LI Xiaozhao, ZHAO Xiaobao, et al. Laboratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology, 2008, 9(3): 242-247.
    袁喜忠,李宁,赵秀云,等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学,2010,31(9): 2689-2694. doi: 10.3969/j.issn.1000-7598.2010.09.001

    YUAN Xizhong, LI Ning, ZHAO Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9): 2689-2694. doi: 10.3969/j.issn.1000-7598.2010.09.001
    周家作,韦昌富,魏厚振,等. 热线源法测量冻土热参数的适用性分析[J]. 岩土工程学报,2016,38(4): 681-687.

    ZHOU Jiazuo, WEI Changfu, WEI Houzhen, et al. Applicability of line heat source method in measuring thermal parameters of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 681-687.
    王伟,张喜发,吕岩. 多年冻土区管道地基土开式冻胀试验研究[J]. 天然气工业,2017,37(10): 93-99. doi: 10.3787/j.issn.1000-0976.2017.10.013

    WANG Wei, ZHANG Xifa, LÜ Yan. Investigation on the open frozen-heave test of the foundation of pipelines in the permafrost regions[J]. Natural Gas Industry, 2017, 37(10): 93-99. doi: 10.3787/j.issn.1000-0976.2017.10.013
    中国科学院数学研究所数理统计组. 回归分析方法[M]. 北京: 科学出版社, 1974: 132-134.
    张喜发, 杨风学, 冷毅飞, 等. 冻土试验与冻害调查[M]. 北京: 科学出版社, 2013: 55-56.
    孙振华. 多年冻土原状样热学性质研究[D]. 长春: 吉林大学, 2008.
    王伟. 冻土传热性质试验研究[D]. 长春: 吉林大学, 2010.
    孙克国, 李思, 许炜萍, 等. 导热系数对寒区隧道温度场时空分布的影响[J]. 西南交通大学学报, 2020, 55(2): 256-264, 289.

    SUN Keguo, LI Si, XU Weiping, et al. Influence of thermal conductivity on temporal and spatial distributions of temperature filed in cold region tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 256-264, 289.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  323
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 修回日期:  2019-01-04
  • 网络出版日期:  2020-03-27
  • 刊出日期:  2020-08-01

目录

    /

    返回文章
    返回